
LABOATORY FOR _O

COMPUTER SCIENCEp TECHNOLOG /

(formerly Project MAC) a)

TM I T/L CS/TR-185/

, EADLOCK PETECTION
IN OMPUTER NETWORKSj

arr odmanH Y

This research was supported by the

A dvanced Research Projects Agency of

9 e Department of Defense and was monitored
by the Office o Naval R d

Contract N /00014-75C-61

CD ~
_N.1475C66

C12 545 II F(NOLOGY SQtJTARE. CAN"1BRIDGL) frACiIUSLTTS 02139

DIST-MBUTIO dTATMENT A_
Approved fox public reiecse:

Distribution Unlimited

SE'1URITY CLASSIFICATION Of THIS PAGE (When Data Bwereco

VREPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETIG FOR

-:/CST--8 V/ .GOTACCESSION NO:3 RIECIPIENT'S ATALOG NUME '

4. TI fLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Deadlock Detection in Computer Networks 'S.B. S.M.Theses,Mdrch 1977
6. PERFORMING ORG. RE9PORT NUMBER

7.____________________________
MIT/LCS/TR-185

). ATHOR*) . CONTRACT OR GRANT NUMMER(o)

~. [. Brry o~.manN00014-75-C-0661

g. PER7OPIMTNO ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA*S WORK UIT NUMBERS

MIT/Laboratory for Computer Science '
545 Technology Square
Cambridae. Ma 02139 _______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Proj ects Agency Spebr17
Dejar unt of Defense Sepeme NU1E9O7PGE
Ir ~sov.ouear~2 8

a. MNUI W!TINt AUENGY NAMIE & ADI95(i! different fro Cntroliing -Office) IS. SECURITY CLASS. (of this repeat)
Office of Naval Research
Department of the Navy tTaclassified

Information Systems Program I ta. DECL ASSI FICATION/ DOWNGRADING

!l15. iSIUIUTON STATEMENT,(Glof 11.Rport)

Approved for public release; distribution unlimited

17. DISTAIIIUTION STATEM!1-NT (of the abstract entoted in block 20, It differgent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If nacesary and Identify by block number)

Deadlock detection multiprocessor
deadlock resource allocation
network
distributed computation

20 AOS"C T (Conttnue on ravorse aid* it nuceecaty and adntif 7y o0C numtea:

'the problem of detecting process deadlocks is common to transaction
oriented computer systems which allow data sharing. Several good algorithms
exist for detecting process deadlocks in a single location facility. However,$
the deadlock detection problem becomes more complex in a geographically
distributed computer network due to the fact that all the information needed
to detect a deadlock is not necessarily available in a single node, and
communications may lead to synchronization problems in getting an accurate

DD JAN 73 1473 EDITION OF I NOV 68 S1$ DOLT
S/N 0102-014- 6601j

SECURITY CLASSIFICATION OF THIS PAGE (Wh7on Date Xntffed)

I J " 2 1Iil . ll -I [_I 4.6CU PITY CLASUFtCATIO* OF YWS PAGUMN Data BRMe

2. View of tbr' ietvork Itate

In this thesis, two published algorthms dealing with deadlock
detection in computer networks are discussed, and e les demonstrating the

I failure of the" algorithms are given. Two algorithms are then presented for
detecting deadlocks in a computer network which allows processes to wait for-

Ay-tt)access to a portion of a database. or (2)'1message from another process.
The first algorithm presented is based on the premise that there is one
control node In t4 network, and this o e has primary responsibility for
detecting #cea deadlocks. The second, and recommended, algorithm distrib-
utes the responsibility for detecting deadlocks among the nodes in which the
involved processes and resources reside. Thus a failure of any single node
has limited effectupon the other node in the network. A computer model of
therdecentralized'(second) algorithm was designed and it is described in
the thesis.

I

-,

= -- m - •ms • ms • e • • m m s~n ~ s ~ muns ~ mm m mm s

in hM

NIIANIOIH r0

Ja IIGTH

IS Mli. (

Ifl111IUTl/AAILAILITY 3O115

16 IA L i f/,, SF
Ibi. IAILMIT/LCS/TR-185

DEADLOCK DETECTION IN COMPUTER NETWORKS

Barry Goldm i

September 1977

DDC

NOV 23 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE D
(formerly PROJECT MAC)

CAMBRIDG MASSACHUSETTS 02139

Deadlock Detection in Computer Networks

by

Rarry Goldman

Submitted to the Department of Electrical Engineering and Com-
puter Science on March 1, 1q77, in partial fulfillment of the
requirements for the Degrees of Bachelor of Science and Master of
Science.

ABSTRACT

The problem of detecting process deadlocks is common to
transaction oriented computer systems which allow data sharing.
Several good algorithms exist for detecting process deadlocks in
a single location facility. However, the deadlock detection
problem becomes more complex in a geographically distributed
computer network due to the fact that all the information needed
to detect a deadlock is not necessarily available in a single
node, and communications delays may lead to synchronization
problems in getting an accurate view of the network state.

In this Thesis, two published algorithms dealing with
deadlock detection in computer networks are discussed, and exam-
ples demonstrating the failure of the3e algorithms are given.
Two algorithms are then presented for detecting deadlocks in a
computer network which allows processes to wait for 1) access to
a portion of a database, or 2) a message from another process.
The first algorithm presented is based on the premise that there
is one control node in the network, and this node has primary
responsibility for detecting process deadlocks. The second, and
recomr jnded, algorithm distributes the responsibility for
detecting deadlocks among the nodes in which the involved pro-
cesses and resources reside. Thus a failure of any single node
has limited effect upon the other nodes in the network. A com-
puter model of the "decentralized" (second) algorithm was de-
signed and it is described in the Thesis.

THFSIS SUPFRVISOR: Stephen A. War,
TITLE: Assistant Professor of Computer Science and Engineering

Acknowledgements

As a participant in M.I.T.'s VI-A (Electrical Engineering

and Computer Science Co-operative) Program, I was able to write

this Tnesis based on research that I conducted while working in

the Advanced Systems Engineering Group of Honeywell Information

Systems, Inc. (Billerica, Mass.) I would like to thank Charles

W. Bachman, who acted as my supervisor at Honeywell. He

suggested the Thesis topic, and gave me valuable advice through-

out various phases of the project. I would also like to thank

others in the group for the help they gave me in conducting the

research and in the writing of the Thesis. They are Mike Canepa,

William Helgeson, Beth Lang, Maxine Neil, Charlotte Reiley, Mario

Trinchieri and Paul Wood.

Additionally, thanks go to Steven Taylor, who provided me

with some feedback in the early stages of my research after

introducing me to Mr. Bachman. Finally, I would like to thank

Professor Stephen Ward for his work in the supervision of the

Thesis, and John Tucker and Lydia Wereminski for running the VI-A

Program.

This research was supported by the Advanced Research Projects Agenci

of the Department (if Defense and was monitored by the Office of Naval

Research under Contract No. N00014-75-C-0661.

ii3
V.ar

TABLE OF CONTENTS

F ABSTRACT 2
Acknowledgements 3
I. Introduction 5

1.1 The Interference Problem 7
I.? Deadlock Prevention 9
1.3 Deadlock Avoidance 10
1.4 Deadlock Detection 11
1.5 Structure of the Thesis 13

II. Proposal of Cnandra, Howe and Karp 15
TI.1 Chandra, Howe and Karp's Proposed Solution 15
11.2 A Fault in the Proposed Solution 17

Figure 11.1 19III. Proposals of Mahmoud and Riordon 20111.1 Mahmoud and Riordon's Centrltzed Control Approach 20
111.2 Mahmoud and Riordon's Distributed Control Approach 21

111.3 Some Comments about the Proposed Schemes 23
Figure 111.1 26
IV. Introduction to Proposed Solutions 27

IV.1 Descriptions of Resources 28
IV.2 Access to Resources and the Blocking of Processes 31
IV.3 Creation and Expansion of an 05wL 33

V. Centralized Approach to Deadlock Detection 38
V.1 Allocation of Resources 38
V.2 Deadlock Detection 40
V.3 Issues to be Resolved 43
V.4 Reasons for not Refining the Algorithm 44

VI. Decentralized Approaeh to Deadlock Dete- .,ion 46
VI.1 Allocation of Resources 46
VI.2 Deadlock Detection 47
V.A Explanation of Steps in the Deadlock Detection Algorithm

49
VI.4 Verification of the Algorithm 52
Vl.5 Some Properties of the Algorithm 60

VII. ADT Model of the Decentralized Algorithm 63
VII.1 Data Structure Diagrams 63
VII.? Architectural Definition Technique 64
VII.3 The Deadlock retection Model 66
VII.4 Test Cases run on the Model 72

VIII. Suggestions for Further Research 74
VIII.1 The Rollback/Retry Problem 74
VIII.? Optimization of the Decentralized Algorithm 77
VIlI.3 Types and Probability of Deadlock 79
VITI.4 Refinement of the Centralized Algorithm 79

IX. Conclusions 80
References 83
Appendix T 84
Appendix TI 92
Appendix TII 146

I. Introduction

A simple example of deadlock (or "deadly embrace") occurs

when a process P1 is blocked while waiting for access to resource

R2 which is controlled by process P2, and P2 in turn is blocked

while waiting for access to resource R1 which is controlled by

P1. A deadlock may involve more than two processes. For exam-

ple, process P1 may be waiting for access to resource R2 which is

controlled by process P2, P2 may be waiting for access to

resource R3 which is controlled by process P3, ..., process

Pin-1] may be waiting for access to resource Rn which is con-

trolled by process Pn, and Pn may be waiting for access to

resource R1 which is controlled by P1.

Multiprocessing and data sharing are commonly used in a

single location transaction oriented computer system. In the

future they will be common to transaction oriented, geographi-

cally distributed computer networks. In this Thesis an algorithm

Iis presented that can be used to detect deadlocks involving pro-

cesses waiting for access to a shared portion of a database or

waiting for a message from a process with which it is

communicating within a computer network. It is possible that a

process can be either computerized or manual, although a manual

process (i.e. a person at a terminal) can not directly request

access to a portion of a database, as it is restricted to only

communicate with computerized processes by the use of messages.

Throughout this paper, the word "operator" will be used to refer

to a manual process.

5

Much has been written dealing with deadlock detection,

avoidance and prevention in computer systems. However, most of

the literature discusses a single location facility where the

status of all processe3 and resources are available in a single

local table. (For a good discussion, including a graph model of

computer systems which can be used to detect deadlocks, see "Some

Deadlock Properties of Computer Systems" (71.) Very few articles

have been publ!shed chat are concerned with the deadlock problem

in a computer network (geographically distributed computer

system).

When dealing with a computer network as opposed to a single

location facility, the deadlock detection problem becomes more

difficult due to the fact that all the information needed to de-

tect a deadlock is not necessarily available in a single node,

and communication delays may lead to synchronization problems in

getting an accurate view of the network state. Some reasons for

restricting access to portions of a database (even though the

result of blocking processes can lead to deadlock) and some rea-

sons why the common deadlock prevention and avoidance algorithms

are not well suited to the networks under consideration will be

discussed. Several deadlock detection schemes for computer net-

works (some from recent literature, some designed by this author)

will be presented, and they will be followed by a discussion of

some of the benefits of using the various schemes.

6

1.1 The Interference Problem

Given two or more independent processes, interference is

said to have occurred if the results produced by their concurrent

execution wou!u not have been obtained by running these processes

one at a time in any order (i.e. nonconcurrently).

A simple example of interference is the following. Let two

processes, P1 and P2, read the contents of database record R1.

Then let P1 add 5 to the value and iet P2 add 10 to the same

value. Now let each process alter the contents of R1 to'contain

the value computed by that process. Depending upon the order of

update, the contents of RI will be either 5 or 10 greater than

the value that was contained during the reads. We have a ca3e of

interference because the value of R1 would have been 15 greater

than the value contained at the time of the first read if P1 and

P2 had been executed sequentially in either order.

Another case of interference occurs when a process, in pro-

cessing one transaction, twice alters +lie contents of the same

database object and in between the two writes, a second process

reads the contents of that database object. In some cases a

process which is only reading the contents of a database object

may not care if there is any interference, in which case it may

request "dirty read" access to the database object. (A process

that is only reading the contents of a database object can not

interfere with the values produced by another process, although

other processes can interfere with the values produced by the

"reading" process.)

7

When maximum. concurrency among independent processes is de-

sired, a process must be allowed to read and alter the contents

of a database object whenever it wants to. (This type of access

to data has beer called "shared read/shared write".) In order to

detect interference, records must be kept about the type of use

(read or write) of each database object, and what processes (and

when they) used it. An algorithm to detect interference when

this information is kept is presented in "On Managing Interfer-

ence Caused by Database Sharing" [10]. A more thorough discus-

sion of interference is also given. After an interference

situation is detected, at least one of the involved processes

must be forced to rollback to a previous state in order to cor-

rect the interference condition.

Most systems, in order to avoid interference and guarantee

that a process will see a consistent state of a database,

restrict access to data by a system of locks. If a process wants

to change the contents of a database object, it must request ex-

clusive access to that database object, thus temporarily (for the

duration of the lock) preventing all other processes from

accessing that database object. If a process only wants to read

the contents of a database object, it can request shared read

access to that database object, thus temporarily (for the dura-

tion of the lock) preventing all other processes from altering

the contents of that database object. If a database object can

he shared among several readers, the method of access is callfd

"shared read/exmlusive write", whereas if there can be only one

reader, it is called "exclusive read/exclusive write".

When a request for access to a database object (resource)

can not be granted due to the existence of a lock on that

database object, the requ; sting process must be blocked until the

resource becomes available. Due to pronesses waitP'g for access

to resources, there exists the possibility of deadlock among the

processes in a computer system.

1.2 Deadlock Prevention

Deadlock prevention schemes place constraints upon system

users in order to ensure that deadlock will never occur. There

is little operating system cierhead involved when using

prevention methods. There are several deadlock prevention algo-

rithms "hat. are widely known:

1. Each process must request all needed resources at one
time and will remain blocked until all requests can be
granted simultaneously. (This is often referred to as
"static" allocation.)

2. All resources are given a unique numbir and processes
must request resources, one at a time, in numerical or-
der.

3. When an active process requests a resource that is con-
trolled by a blocked process, the blocked process must
release the resource so that it may be allocated to the
active process. A process will go from the active to
blocked state only if it requests a resource controlled
by another active process.

The unpredictability of resource usage in a transaction

oriented -ystem, plus the loss of productivity that results from

tying up resources unnecessarily or forcing processes to release

resources and request them later (which often results in some

redundant computations due to a process having to repeat some

operations to maintain a consistent database) make prevention

algorithms undesirable for use in the systems under considera-

tion. In a multiprocessing environment which conjiders

inter-process messages as resources, it is impossible to have an

advance knowledge of all the resources that will be needed by a

process. Thus algorithm 1 can not be used in this type of sys-

tem, whether It is a single or multi node facility. Algorithm 2

is unsuitable for the systems under consideration because al-

! though it may be Possible to give a unique number to each

inter-process message, a process must be "allocated" each message

that it will send to another process, which can result in many

difficulties when two processes are sending severe messages to

each other. Algorithm 3 can not be used because it implies tnat

all resources must be pre-emptable (i.e. they must be able to be

released by a process upon the demand of the system), which is an

impossible situation when messages are treated as resources.

1.3 Deadlock Avoidance

Deadlock avoidance algorithms calculate safe paths for com-

pletion of all processes. Before a resource is allocated to a

Riven process, the operating system checks If there would be at

least one path via which all processes can run to completion

after the allocation is made. If no such path exists, then the

requesting process must wait until a time when the resource can

he safely allocated to the process. Avoidance algorithms thus

10

force processes to wait unnecessarily in order to be certain that

all processes will be able to run to completion without the

threat of deadlock.

In "System Deadlocks" (5] it is stated that "to avoid

deadlocks in a multiprogremming system in which the necessary

conditions for deadlocks can exist, it is usually necessary to

have some advance information on the resource usage of tasks."

When portions of databases are considered resources, and they are

locked at a level lower than a filo (page, record, field, etc.),

it is difficult to determino l'i advance what database objects

will be needed. In addition, due to the unpredictability of

processes in a transaction oriented system, it ii impossible to

have an advance knowledge of all the inter-process iessages that

will be requested by a process. Therefore, deadlock avoidance

algorithms can not b, used in a single or multi node transaction

system which permits inter-process communication.

1.1 Deadlock Detection

Since it seems that deadlock prevention and avoidance algo-

rithms are unsuitable for the distributed systems under consid-

eration, deadlock detection methods must be examined. When

employing a deadlock detection algorithm, requested resources are

usually as3igned to the requesting processes whenever possible,

and processes are blocked only when desired resources are

unavailable. Either the operating system or a system user must

occabiorIuily uiieuk IoI a d -ae - - ', v t±uat ,

r 14

must rollback (backup) and retry at least one process in order to

break the deadlock. (It is hoped this will force a new sequence

of access to resources.)

From the implementor's viewpoint, the easiest strategy to

adopt is that where one assumes deadlock occurs infrequently. In

[this case someone (an operator) external to the network would

have the responsibility for detecting the deadlock and deciding

hat process should he forced to rollback to a previous state.

A [With this approach the only overhead involves the temporary

inability to access the resources controlled by the deadlocked

processes and the cost of rollback/retry of some (or all) of the

deadlocked processes. (This cost may be large for each deadlock,

but if there are few deadlocks the overall system cost may be

less than it would be if there were a "deadlock detector" that

vas constantly checking for deadlocks.) CNe could also assume

that if a process has been blocked for 'X' units of time, then it

is deadlocked and the operating system should force it to

rollback to a previous state, although this strategy may result

in some unnecessary redundant computations because some processes

that will be retried may not have been involved in a deadlock.

At least two articles have been published which propose

protocols for allocating datahase objects in a computer network

in a manner such that deadlock can he detected at the time a

request for access is denied. In designing an algorithm to be

used to detect process deadlocks in a transaction oriented com-

puter network which allows process to process communication, it

42

is necess.'y to allow for the possibility of a process waiting

for a message from another process (which may be manual or

computerized). Additionally, a process must be allowed to wait

for access to a database object which has been allocated to at

least one other process.

Any algorithm that will be implemented as part of an oper-

ating system should be as efficient as possible. Therefore, in

the algorithms proposed by this author, an attempt was made to

minimize the number and size of internodal messages involved in

the detection of deadlocks.

1.9 Structure of the Thesis

Chapters II and III contain descriptions and comments

j (including some examples pointing out deficiencies) relating to

two papers that have been published proposing protocols for

allocating database objects in a computer network such that

deadlock can be detected at the time a request for access to a
" ! database object is denied. Chapter IV presents an introduction

to the two schemes for detecting deadlock in a computer network

that are proposed by this author in Chapters V and VI. The two

3chemes differ in that one (Chapter V) places the primary re-

sponsibility for detecting deadlock anywhere in the network on

one control node, whereas the other totally distributes the re-

sponsibility throughout the network. Chapter VII contains a

discussion of a functional model of the algorithm proposed in

Chapter VI. The Appendices contain a description and demonstra-

13

tion of the model, in addition to containing the PL/I code for

the model itself. Chapter VIII contains some suggestions for
future research, and Chapter TX contains a comparison of the

various algorithms presented in Chapters 1, 11, V and VI, plus

some concluding remarks.

If one only wants to read about the algorithm that is

recommended by this author, it Is possible to read Chapters IV

and VI with no loss of understanding. Chapter VII can also be

understood after reading Chapters IV and VI; as can the Appendi-
I ces and some portions of Chapter VIII.

K

I

i'L

II. Proposal of Chandra, Howe and Karp

In *Communication Protocol for Deadlock Detection in Com-

puter Networks" C3), a scheme is presented which the authors call

"a novel solution to the deadlock problem in the network

environment." Their "solution" is described below, and the de-

scription is followed by an example where the scheme allows a

deadlock to go undetected.

11.1 Chandra, Howe and Karp's Proposed Solution

The authors propose that each installation (node) maintain a

resource table (RT) which contains information about which pro-

cesses have been allocated local resources, which processes have

been queued (waiting for access) for local resources, which local

processes have been allocated remote resources and which local

processes have been queued for remote resources. The type of

access requested by each process is also recorded. The authors

claim that in a single node facility, there are several well

known algorithms for detecting deadlocks using the tables

mentioned above. They then state "it is believed to be obvious

that these same algorithms would suffice in the multiple instal-

lation case provided that the resource table were to be expanded

to include the pertinent information from the remote sites." A

scheme to expatid the resource table in a node is given in the

paper.

The authors believe there are three types of requests for

resources that can lead to deadlock. (In all cases, "it is as-

15

sumed that the requested resource is not available, because, if

it were, the allocation would take place immediately.") The ac-

tion taken for each type of request is the following (as stated

in the paper):

Case 1

A process requests a local resource, which is allocated
to a local process, and all of the processes which are
queued for this resource are also local processes. All of
the necessary information is contained in the local RT, and
the request is resolved locally.

Case 2

A process requests a local resource, which is either
allocated to a remote process or one or more of the pro-
cessas that are queued for this resource are remote
processes. In this case, all of the RT's must be obtained
by the local installation since deadlock may occur. Once
all of the RT's have been obtained, the
deadlock-determination algorithm can be applied to the
expanded RT which conta~ns all of the resources and pro-
cesses in the total community of installations.

Case 3

A process requests a rescrce at some remote installa-
tion. In this case, the requesting installation forwards
the request and its RT to the installation which has the
requested resource. This installation then determines if
the request can be honored immediately or if all of the RT's
must be first obtained. In the case where the requested
resource is allocated to or queued by only processes local
to the two involved systems, the request can be honored im-
mediately. Otherwise, this Installation obtains the RT's
from the remaining installations and then resolves the
request.

In all of tht-se cases, the RT's that are involved in
the decision procedure must be locked until after the deci-
sion has been made. If the decision involves the RT's of
the other installations in the community, these installa-
tions must be notified after the decision is made and their
table is then released. In Case 3, the updates to the RT
must be returned to the requesting installation while all
other tables can be discarded and a simple release notice
returned.

16

A description is given of the actions to be taken when "two

or more installations may simultaneously request the various RT's

in order to make an allocation for two or more independent

requests."

II.2 A Fault in the Proposed Solution

There are some resource requests which fall under Case 1,

and result in a deadlock for which the locel RT does not contain

enough information to detect. Consider the following example:

Let the network consist of two nodes, A and B. Let

processes P1 and P2 and resource RI be local to A, and let

processes P3 and P4 and resources R2, R3, and R4 be local to

R. Assume the following state of the network. (Figure

IT.la contains a diagram of this "intermediate" state.) P1

h~s exclusive control of RI and is queued waiting for access

to R4, P2 has exclusive control of R2 and is queued waiting

for access to Ri, P3 has exclusive control of R3 and is

queued waiting for access to R2, and P4 is active

(non-blocked) and has exclusive control of R4. In this

state there is no deadlock. Now let P4 request access to R3

and be queued for the resource. A deadlock now exists (see

F)gure II.Ib) involving all four processes and all four

resources. With the tables as described in the article,

this deadlock could not be detected unless node A sent node

P its tables, but this does not take place because the

request falls into Case 1 (since P4 is local to R, as are P3

17

-NON WA low I I N-1 li

and R3). Therefore the deadlock goes undetected.

Similar examples (for networks consisting of three or more

.'odes) exist wher. requests falling undor Cast 3 result in

undetected deadlocks. RT's from 3 or more nodes may be needed

even If "the requested resource is allocated to or queued by only] processes local to the two involved" nodes.

Node A Node 8

'1 ~ Intermediate State Diagram

Figure II.la

R1 R

R4 P4

Final State Diagram

Figure II.lb

KEY

Represents a process

jI-J Represents a resource

L--* Represents a process having exclusive use of a resource

Represents a process waiting for access to a resource

19

•0 - .

III. Proposals of Mahmoud and Riordon

In "Protocol Considerations for Software Controlle- Access

Methods in Distributed Data Bases" C81, two schemes are presented

for allocating database files in a network environment. The

authors (Professors at Carleton University, Ottawa, Ontario,

Canada) claim that with their schemes, by using the graphic rep-

resentation as described in [91, dtadlocks can be detected at the

time an allocation decision is made. The two schemes are de-

scribed below, and a brief discussion about the schemes follow;,

including an example where one of the proposals allows a deadlock

to go undetected.

The first approach described requires that all deadlock

tests be made by one node, whereas with the second approach each

node must test for deadlock resulting from different processes

accessing its files. Each node in the network will contain a

Distributed Dbta Base Management Facility (DDBMF) which will

communicate with the other DOBMF processes In the network for the

purpose of handling requests for local and remote processes.

II.1 Mahmoud and Riordon's Centralized Control Approach

In the centralized approach, one node, called the control

node, will miake all the deadlock tests and handle all file

allocations. If a process running at node I would like access to

a file in no-Ie J, a request is sent to the DDBMF in node I, which

then relays it to the central DDBMF, even if node i and node j

are the same. Since the central DDBMF makes all the file

20

A'
allocation decisions, it has an overall picture of the global

network status, and can therefore decide if the request can

safely (without deadlock) be placed on the file queue.

UII.2 Mahmoud and Riordon's Distributed Control Approach

j Tn the distributed approach, the DDBMF at each node will

have full control over all access to the files located at its

node. As a result of this, the authors state that "each node

DDBMF will be responsible for handling job interference

(deadlock) problems that may arise while different processes are

accessing its files." In order to avoid or detect deadlocks

involving processes and files located at two or more nodes, "each

individual DDAMF must obtain information from other DDBMF pro-

i ceases Indicattng the status of their files and queue tables.
The information will be used ... to construct a global picture of

the network and thus enable each individual DDBMF process to make

the correct decisions."

All active user processes are separated into two classes.

Xn the authors' own words,

The classification is based on the localities of the files
requested by the process and the type of access to each of
these files:

Class 1: each process belonging to this class has the fol-
lowing properties:

1) All files accessed by the process during its active
session are located in a single node.

2) All files being updated by the process are single-copy
files in the network (i.e. only a single copy of each
file exists in the network).

Class 2: each user process belonging to this class has the
following properties:

1) Files that are accessed simultaneously by the process

2i

during an active session do not all exist in a single
computer system and/or

2) Any one of the files being updated by the process has
multiple copies in the network.

It is obvious that the two classes of processes are
mutually exclusive.

The authors suggest using a graph representation in order to

detect deadlock, and they describe how a DDBMF gets information

from the other DDBMF's in the network and when it should check

for deadlock:
I Assume that there are n nodes in the network, i.e., n

individual DDBMF processes. Each process will transmit
(n-1) identical messages simultaneously, with one message
addressed to each of the remaining DDBMF processes. Each
message contains the most updated information about the
status and queues of files at the node in question. The
messages will be transmitted periodically at the onset of
synchronous clock intervals. Similarly, each DDBMF process
will receive periodically (n-i) messages from the other
processes. Now assume that a DDBMF process receives a
request for access to one of the files under its control
from a local or remote user process. If the requesting
process belongs to class 1, the DDBMF will respond immedi-
ately to the request. Otherwise the DDPMF will delay action
until the next time interval, i.e., until receiving updated
information about the status of the network files from other
DDRMF processes. The request is then checked against any
possible interference (deadlock) and the user process is
notified once a decision is made.

Requests which can not be acted upon until the next time

Interval are placed in a pre-test queue.

At the beginning of a clock interval, each processor
receives information from other processors including the
contents of the file queues and the pre-test queue. The
processor extracts the contents of the pre-text queues and
combines them to construct a global pre-test queue which
includes all the requests for file access received by all
processors during che previous time interval. The file ac-
cess requests on the global pre-test queue are tested for
deadlock conditions and decisions are then made.

To avoid deadlock situations caused by critical race

conditions, the file access requests on the global pre-test

T2?

queue must be arranged in the same order in all
processors... All processors must then follow a predefined:
routine in constructing the global pre-test queue. The
resulting versions of the global pre-test queue will be
identical in all processors at the beginning of every clock
interval.

111.3 Some Comments about the Proposed Schemes

The authors state that their schemes will work if records,

or other units serve as the identifiable unit of object data,

rather than files, which were mentioned throughout the paper.

When records are allocated in~ividually, there will be more mes-

sage traffic due to additional message requests for access to

database objects. Nowhere in the paper is the problem of message

congestion at the control node (when using the Centralized

approach) discussed. With all requests fir access to database

objects being handled by the cen tral DDBMF, there exists the

possibility of a message bottleneck at the control node, which

would degrade network performance due to slow response to the

requests.

It is mentioned that failure of the control node (when using

the Centralized approach) can "paralyze the operation of the

whole system," although all the DDBMF's can send all their in-

formation to another DDBMF, thus recreating the global picture of

the system at a newly designated control node. Although the

author's Centralized approach may ue "inefficient," it can be

used to successfully detect all process deadlocks when only wait3

on database objects are involved.I, The necentralized approach, as described in the paper, does

23

not detect all deadlock situations when only process waits for

datahase objects are involved. Consider the following example:

Let the network consist of two nodes, A and B. Let

processes P1 and P?, and files F1 and F2 be local to node A,

and let processes P3 and P4, and files F3 and F4 be local to

node R. Assume the following state of the network. (Figure

III.la contains a diagram for this "intermediate" state.)

P1 has exclusive control of F1 and is queued waiting for

access to F4, P2 is active (non-blocked) and has exclusive

control of F2, P3 has exclusive control of F3 ano is queued

waiting for access to F2, and P4 is active and has exclusive

control of FM. P1 and P3 belong to class 2, as defined by

Mahmoud and Riordon, and P2 and P4 both belong to class 1 as

long as each does not request access to a file located in a

node other than the one in which the process resides.

Now, within the same time interval, let P2 request ac-

cess to F1 and let P4 request access to F3, thus creating a

deadlock because neither file can become available. (Figure

III.lb contains the final state diagram for this deadlock.)

P2 and P4 remain class 1 processes, and therefore these

requests should be acted upon immediately and each node will

check for deadlock using the Information that it has. No

deadlock will be detected because neither node has the in-

formation about the recent request in the other node, and no

provisions are stated in the article which imply that

?4

deadlock involving P2 or P4 will be checked for at the onset

of the next synchronous clock period.

The authors believe that class 1 processes do not contribute

j to deadlocks that involve processes waiting for files located in

'more than one node, and therefore deadlock can be checked for

using only the information located at one node when a class 1

process requests access to a file. It is this assumption that

leads to the downfall of their Decentralized approach, because it

is possible that a class 1 process will request access to a file

controlled by a class 2 process, resulting in a deadlock (as

shown In the previous example) involving processes which are

collectively waiting for access to files located in two or more

nodes. Note that this is similar to the flaw in the protocols

for deadlock detection proposed by Chandra, Howe and Karp.

:2

r _ 25

M1 ode A Nd

P2 F3

Intermediate State Diagram

Figure 1I1.1a

Final State Diagram

Figure III. lb

K FY

Represents a process

Represents a file

1I1~Q)Represents a process having exclusive use of a file
Represents a process waiting for access to a file

26

IV. Introduction to Proposed Solutions

The deadlock detection schemes that are presented in

Chapters V and VI are based on the creation and expansion of or-

dered blocked process lists (OBPL's) and the restriction that a

process may only have one unapproved outstanding resource request

(and therefore be waiting for at most one resource at any

instant). A resource may be any non-ambiguously defined portion

of an object, whole object, or collection of objects which are

requested as an entity and released as an entity by all users.

(The Case where there are several equivalent resources like tape

drives is not coisidered. A discussion of physical devices oc-I curs later in this chapter.) An OBPL is a list of process names,

each of which (with the exception of the last process in the

l'qt) is waiting for access to a resource that has been assigned

to the next process in the list. Each process name in the list

is often referred to as a process entry in the OBPL, and when an

OBPL is sent between nodes, a resource name is inserted into the

single resource identification portion of the OBPL. The last

process to have an entry in the OBPL is either waiting for access

to the resource named In the resource identif:lcation portion, or

it already has access to that resource. In the former case, it

must be determined what process controls the resource, whereas in

the latter case, the state of the last process in the OBPL must

be determined.

It is assumed that at each node there is a proces manage-

ment module '"MM) which will handle deadlock detection and

?7

resource allocation. It will maintain local state tables which

will contain information about local resources (resources which

are located in that node) and local processes (processes which

are running in that node). If a PMM is checking for deadlock,

and it is examining the OBPL with process entries P1, P2, ... ,

P", then it knows that each process in the list (with the

exception of PN) is waiting for the next process in the list to

release a desired resource. If PN is not blocked, there is no

deadlock and the OBPL can be discarded. If it is blocked, then a

PMM must find out what process has been allocated the resource

for which PM is waiting. If this process already has an entry in

the OPPL, there is a deadlock, otherwise a PMM must append the

process name to the OBPL and repeat the above. The schemes that

are being proposed differ from each other in the way the OBPL's

aet expanded.

IV.1 Descriptions of Resources

There are three types of resources that a process may wait

for where the blocking of the process can result in a deadlock.

They are database objects, message text from other computerized

processes, and message text from operators (manual processes). A

distinction is made between message text from processes and mes-

sage text from operators because a deadlock which involves no

ooerator messages can be detected without operator interaction,

whereas if a process is waiting for message text from an opera-

tor, a deadlock can not be detected without the operator stating

28

what he/she is waiting for. The reason for the latter point is

that an operator typically does not type in "receive message"

statements, but accepts output as it is given. In the algorithms

presented, it is assumed that an operator can only wait for a

message from a process with which he/she is communicating (a

discussion of operator and process communication is given later

in this section). This restriction can be relaxed, and it is

discussed in Chapter VIII.

Database objects, as discussed in this paper, can be fields,

records, files, or any other logical or physical component of a

database. It is important that all processes treat the same

portion of a database Identically for the purposes of aliocation.

The level of granularity (which may vary for different database

vbjects) at which database objects are allocated is unimportant

for the detection of deadlock: it does however, affect the

frequency of deadlock and, conversely, the burden of maintaining

information about resource allocation.

Message text must be treated differently from database ob-

Jects because once a message text has been assigned to a process,

it is not 3vailable to any other process. In this 3ense, once a

message text has been assigned, it no longer exists for future

assignment. To ensure that a process receives the proper message

text, the sending and receiving processes must create a unique

connection over which message text between the two processes may

pass. When a process would like to receive message text, it must

state over which previously established connection the text

2q

I __ _ __ _ ______ ____ __

should come. Similarly, when a process wants to send message

text, it must give the message text and name the connec'.ion over

which the text should pass. All messages that are sent and

received over a given connection will be referred to as text

within a specific message group.

When message text is sent by a process, it is queued for

receipt at the proper destination end of the connection. A pro-

cess may send several items of message text over a given connec-

tion before any messages are requested by the other process as-

sociated with the connection. In this Case the items of message

text are queued for receipt in a first in, first out manner. It

is assumed that mes3age management has infinite queueing

capacity, and therefore the possibility of a deadlock involving a

process which wants to send a message but is blocked because

there is no place to put the message text will not be dealt with.

Unlike process to process messages, which may be sent be-

jtween nodes, when a process and an operator communicate, they

must he located at the same node, Similarly, however, an

"operator connection" must be established between the operator

and process before message text can be sent over the connection.

The operator connection must be specified when message text is

sent or received over the connection. When messages are sent

from a process to an operator, they are usually printed immedi-

ately at the operator's terminal. However, messages that are

sent from an operator to a process are queued for receipt in the

same manner as process to process messages.

30

All of the resources described above are uniquely identifi-

able, and are allocated dynamically (i.e. during the execution of

the process requesting access to the resource). None of thfm are

physical devices (tape drives, printers, etc.), which are often

not uniquely identifiable (there may be N of a kind). Physical

devices are not considered by the algorithms that are being pro-

posed because they are typically allocated to a process before

execution begins and the known networks restrict processes to

requesting physical devices at the same node. (If a process

wants to control a physical device at another node, it must do so

indirectly through a process located at the same node as the de-

sired device.) Additionally, transaction oriented processes

typically do not use dedicated devices.

IV.2 Access to Resources and the Blocking of Processes

A process may get blocked when it requests read only I
(shared) access or exclusive (read/write) access to a database

object. While one process has exclusive access to a specific 4

database object, all r quests for access to that database object

result in the requesting process being blocked. While at least

one process has shared access to a specific database object, all

requests for exclusive access to that database object result in

the requesting process being blocked, and requests for shared

access to that database object will result in the requesting

process being blocked or being granted access to the desired

resource (depending upon the resource allocation scheme in use).

31

Because data values are not changed when a process only reads a

database object, any number of processes may be allowed to have

concurrent read only access to a database object. When all pro-

cesses that had shared access to a given database object have

released it, or when a process releases a database object from

exclusive use, at least one process will be awakened and grrnted

access to the newly released database object, if any were waiting

for access to it.

Once a process has been granted shared access to a specific

database object, subsequent requests by that process for exclu-

sive access to that database object are rejected. This restric-

tion prevents a process from getting blocked waiting for a

database object that it already has access to, and implies that a

process must declare its most restrictive use when it requests

access to the database object. (It must request exclusive access

if there is any chance that the process might change the content

of the database object.) In order to ensure that a process has a

consistent view of the database, and that processes may be roiled

back to a previous state (when necessary), no database objects

will he released by a process until that process has reached a

"commitment point", at which time all the database objects that

the process had access to are released. A commitment point is

always reached at process termtnation. (When a process continues

processing after reachiug a commitment point, for purposes of

detecting deadlock, a PMM can treat It as a new process because

it released all its database resources, and notified all pro-

3?

popi

cesses to which it could send messages that no more messages are

forthcoming. The external effects of a process, including

database updates and message text sent, can not be cancelled

after commitment. Process commitment points are synchronized,

which is to say that after a proces reaches a commitment point,

it does no further processing until all processes with which it

has established connections over which it can recoive messages

have also reached commitment points.)

If a process attempts to receive message text, over a speci-

fic connection, it will be given one message if' any are queued

for receipt at that process'es end of the connection. If no

messages are available, the process is blocked until message text

arrives. Upon arrival of a message, the process will be

awakened, because the receiving process is uniquely identified by

the connection over which message text is sent. Steps must be

taken to ensure that the receiving process and the sending pro-

cess of a message treat the same text as one message. (One pro-

cess can't treat a line as a message when the other process

treats a group of sentencos as a message.)

IV.3 Creation and Expansion of an OBPL

When a PMM wants to check whether a given blocked process is

involved in a deadlock, it creates an OBPL and inserts the net-

work unique name of the process as the first process entry in the

OPPL. (It is assumed that operators, processes and resources

have unique names within a node, and these names can be made

33

I lq 1 -1

unique within a network by qualifying them with the name of the

node in which they reside. Throughout this Thesis, operator,

nrocess and resource names are assumed to be network unique.)

Call this process P1. Let R1 be the resource to which P1 desires

access. R1 is then inserted into the resource identification

portion of the O8PL. A PMM (which PMM depends upon what scheme

is being used to detect deadlock, and whether P1 and RI are in

the same node) then determines what process controls R1. If RI

is a database object, then the process that controls RI is the

process that has access to it, (If there are several shared

readers of R1, then it is said that each reader controls R1 and

the OPPL is copied enough times so that there is one list for

I each reader of R1, and a different copy of the ORPL is used for

each reader.) If R1 is message text in a message group, then the

process that controls RI is the process that can send the desired

message, and if R1 is message text from an operator connection,

the process that controls the resource is the human operator that

can send the message. If RI is message text over a connection to

which no process other than P! has associated itself, the PMM

saves the OBPL so that after another process or operator associ-

ates itself with the connection the needed information will be

available and the OBPL can be expanded further. It is assumed

that no deadlock can exist unless two processes are associated

with the connection over which the desired message text can be

received.

Let PK be the process that controls RI. A PMM then checks

- 34

r

if PK already has an entry in the OBPL that is being examined.

If it doesn't, the PMM adds its name to the OSPL and then lets

some PMM determine if PK is active. If PK had an entry in the

OBPL, the PMM has detected a deadlock, and should take the ap-

propriate action. Note that the entry for PK can be anywhere in 1

the ORPL, as it is possible that a process not involved in the

deadlock may be waiting to access a resource controlled by a

process that is involved in the deadlock. If PK is active, then

there is no deadlock and the OBPL can be discarded. If PK is

blocked, then the above procedure should be repeated, except PK

should be used instead of P1 and a PMM determines what resource

PK is waiting for. If PK represents an operator, then the PMM

must save the OPPL until information about the status of the op-

erator becomes available. A message is sent to the operator

stating that this state information is desired. Lf the operator

sends message text to a process, or if the operator rosponds that

he/she is active, then all OBPL's that needed state information

about this operptor are discarded since there is currently no

deadlock. If the operator states that he/she is waiting, then

the operator connection over which the operator is awaiting a

message must also be stated. The process that can send the op-

erator the desired message is determined from the connection

name, thus the PMM now knows what process controls the resouroe

Tthe operator desires, and this information is used to further

expand all the OPPL's that needed state information about the

operator. Tf no ORPL's needed this information, and the operator

35

volunteers the information that he/she is blocked, then an OBPL

is created with the first process entry representing the opera-

tor.

In order to ensure that a PMM sees a consistent set of state

tables, no resources get allocated or released in the node of the

PMM while the PMM is examining an OBPL. (The PMM holds exclusive

use of the state tables in its node. The reason for this re-

striction becomes apparent in Chapter VI in the verification of

the decentralized algorithm.) There is no chance of a PMM itself

being involved in a deadlock because it is the only process that

has access to the state tables in its node, and it does not wait

for any messages or request access to any other database objects.

Resource requests and OBPL's arriving from other nodes result in

subroutine calls to the PMM. These calls are handled in a FIFO

sequence. In addition, when a process or operator associates

itself with a connection, a PMM is called to check if any OBPL's

have been saved waiting for this information. Furthermore, when

an operator sends message text to a process or states that he/she

is active or blocked, the PMM at that node checks if any OBPL's

have been saved waiting for state information about the operator

and takes the appropriate action.

The time at which an OBPL gets created depends upon the

optimization of the deadlock detection scheme, and which PMM

creates the ORPL depends upon what scheme

(centralized/decentralized) is used. An OBPL can be created as

soon is a process becomen hocked, or it can get: created after

36

IXI units of time have elapsed without the process gaining access

to the desired resource. The latter approach will be used with

the expectation that normally the process will be granted access

to the desired resource within 'X' units of time because deadlock

does not exist. Thus the overhead involved in creating and

expanding an OBPL will usually be avoided. However, within the

body of this paper, in the interest of clarity it is assumed that

an ORPL is created immediately after it is determined that a de-

sired resource is currently unavailable. It should be understood

that the removal of this assumption, and the imposition of a

delay before the OBPL gets created, does not impair the

effectiveness of the algorithms because once a deadlock occurs,

it exists until some type of recovery action is initiated.

Certain information must be available to the PMM's if the

ORPL's are to be properly expanded. The PMM at each node will

maintain a table which has an entry for each process in its node.

Associated with each process entry will be a list of all the

resources to which the process currently has access, and the name

of the resource to which the process desires access (if the pro-

cess is waiting). For each resource at the node, the PMM must

keep information stating what process or processes currently have

access to that resource, and what type of access they have. In

addition, a list of all processes that are waiting for access to

that resource must te maintained. (The latter information is

necessary so that the resources will be properly allocated when

they become available.)

37

V. Centralized Approach to Deidlock Detection

A "centralized" approach to deadlock detection in a computer

network is based upon the premise that one node (the "control"

node) in the network will act as the center of activity for glo-

bal resource allocation and deadlock detection. In order to re-

duce overhead, any requests for resources or checks for deadlock

that can be handled entlrely by one node should not request the

service of the control node. For reasons that will be explained

later, the following description has not been refined, and should

not be viewed as a working algorithm. The description presents

some ideas that could form the basis for a practical centralized

approach to deadlock detection.

V.1 Allocation of Resources

A process management module (PMR) will have responsibility

for granting access to a local resource as long as no remote

processes have been allocated the resource nor have been queued

for it. When these conditions do not hold, the control process

management module (CPMM) (located in the control node) will have

responsibility for grarting access to the resource. Thus when a

process desires a remote resource, the request must go to the

CPM4?. When a process requests a local resource, the request must

go through the CPMM only if that module ,Jurrently has responsi-

"ility for granting access to the resource, otherwise the request

will be handled by the local PMM. The set of resources for which

the CPMM grants access changes dynamically. (As soon as a pro-

LA

cess requests a remote resource, that resource becomes a member

of the centrally managed set if it isn't already a member, and

when the conditions above are satisfied again, the resource is

removed from the set.) For each resource in the set, the CPMM

maintains a list (in the global resource control table) of all

processes queued for that resource plus the name of the process

or processes (in the case of shared access) that have been al-

located the resource.

There are essentially three classes of resource requests in

this type of network. The following is a list of the resource

request classes and the proper response to each type of request:

1, A process requests a resource at the same node as the
process, and the local PMM is responsible for granting
access rights to the resource: The PMM can block the
process or give it the resource. In either case, the
PMM can update the appropriate tables.

2. A process requests a resource at the same node, and the
CPMM has been given responsibility for granting access
rights to the resource: A message containing the
rezcuree request must be sent from the local PMM to the
CPMM. The local PMM will block the process until it
receives notification from the CPMM that the desired
access has been granted. Upon receipt of the resource
request, the CPMM will either grant the process access
to the desired resource, or keep it blocked. In either
case, the CPMM updates its tables to reflect the state
after this request has been processed.

3. A process requests a resource at another node: A mes-
sage containing the resource request must b0 sent from
the local PMM to the CPMM. The local PMM will block the
process until it receives notification from the CPMM
that the desired access has been granted. Upon receipt
of the resource reauest, the CPMM, if it had the re-
sponsibility for grarting access to the specified
resource, will either grant the process access to the
desired resource or keep it blocked. If the CPMM did

not have such responsibility, it will demand it from the
PMM that does, and then the CPMM will process the
request. After the request nas been p,'ocessed, the CPMM

will update its tables appropriately.

When a process reaches a commitment point, the .ocal PMM

will release all the resources that the process controlled. The

PMM can then grant other local processes access to the resources

that were released and for which it has responsibility for

granting access. If any resources which were under the CPMM's

control were released, the CPMM will be notified of the reaching

of a commitment point by the process, Pd It will then grant

other processes access to the resources if any are queued for

them and the rules for resource allocation permit the new

assignments. If possible, following a resource release, the CPMM

will return responsibility for granting access to a resource back

to the PMM in the node where the resource resides.

V.2 Deadlock Detection

When a PMM denies a request for a resource and blocks a

process, it then creates an OBPL with a process entry for the

blocked process. It then expands the OBPL until 1) a Jeadlock is

detected, 2) it is ascertained that there Is no deadlock, or 3)

the PMM does not have enough information to expand the OBPL fur-

ther (because an involved process is waiting for a global

resource, or a local resource is controlled by a remote process).

In the latter case the PMM sends the OSPL to the CPMM, which will

complete the expansion of the ORPL. When the CPMM denies a

request for access to a resource, it creates an OBPL with a pro-

cess entry for the blocked process and then expands the OBPL un-

40

til a deadlock is detected or it is ascertained that no deadlock

exists.

To expand an OBPL, a PMM uses its state tables that were

described in Chapter IV, and the CPMM uses its global resource

tables and those of the PMM's in the network. (How it obtains

copies of these tables is discussed later in this chapter.) The

method by which the PMM's expand an OBPL will be descr.bed first,

and it will be followed by the method which is used by the CPMM.

After a PMM has created an OBPL, it acts as if it were in step 2

i below, with PN set to the name of the process which was just

blocked, and RN set to the name of the resource for which PN is

taiting. The following is a list of steps taken by a PMM when

expanding an OBPL:

1. Let PN be waiting for resource RN. If RN is a local
resource, go to step 2, otherwise go to step 6.

2. If RN is controlled only by local processes, go to step
3, otherwise go to step 6.

3. Let PX ibe the process controlling RN. If PX is blocked,
go to step 4, otherwise there is no deadlock and the
OBPL can be discarded. (If there are J shared readers
of RN, repeat this step once for each reader.)

4. If PX is already contained as a process entry in the
OBPL, there is a deadlock and the PMM must take appro-
priate action. If PX is not in the OBPL then go to step

5. Append PX as a process entry in the OBPL and go to step
I, where PX is used in place of PN.

6. Place RN into the resource identification portion of the
OBPL and send the OBPL to the CPMM. Halt.

The CPMM will create an OBPL when it denies a request for

access to a resource. The only process entry in the newly cre-

41

ated ORPL is for the process whose resource request could not

currently be honored. After a CPMM has created an OBPL, it

starts in step I below, with RN set to the resource whose

unavailability rasulted in the OBPL being created. If the CPMM

receives an OBPL from a PMM, it sets RN to the resource that was

placed in the resource location of the OBPL, and sets PN to the

last process to be inserted into the OBPL. The CPMM verifies

that PH is still waiting for RN (if it isn't, either RN has al-

ready been allocated to PN or the CPMM has not yet received the

request by PN for access to RN, so there is currently no deadlock

and the OBPL can be discarded) and then starts in step 1 below.

The following is a list of steps taken by the CPMM when expanding

an ORPL:

1. Let PX be the process controlling RN. (If there are J
shared readers of RN then repeat this step once for each
reader.) To find PX, the CPMM first checks if RN is in
the global resource table. If it is, then this table is
used to get PX, otherwise the copies of the local tables
for the node in which RN resides are used by the CPMM.
Go to step 2.

2. If PX is blocked, go to step 3, otherwise there is no
deadlock and the ORPL can be discarded. (First check if
PX is waiting for a global resource, and if it isn't,
then check the copies of the local tables for the node
in which PX resides in order to find out if PY is
blocked or active.)

3. If PX is already contained as a process entry in the
C)PL there is a Ua ock cnd the CPMM must take apnro-
priate action. If PX is not contained in the OBPL, go
to step 4.

4 Append PX as a process entry in the OBPL and go to step

5, where PX is used in place of PN.

q. Let PN be waiting for RN. (If PN is waiting for " glo-
bal resource, use the glcbal resource table to determine
RN, otherwise use the copy of the local tables for the

4?

i2

node in which PN resides.) Go to step 1.

V.3 Issues to be Resolved

There are several problems with the algorithm as described

in the previous section. A major problem is determining how the

CPMv maintains its copies of the tables belonging to the PMM's in

the network. One possibility is to have each PMM send a copy of

its tables to the CPMM every 'X' units of time. Another is to

have the CPMM request a new copy of the tables that it needs if

'Y' units of time (Y may equal 0) have elapsed since it last

received a copy of the desired table. In either case, once a

deadlock has been detected, all the tables of the nodes whose

processes and resources are involved should again be requested by

the CPMM in order to verify that the deadlock exists and that the

CPMM's detection was not a result of the CPMM looking at an

inconsistent state of the network. (Due to the fact that the

list of resources that are kept in the global resource table

changes dynamically, and the CPMM does not always have an up to

date copy of the local tables, it is possible that some needed

information may be incorrect and could cause problems for the

CPMM.) It is probable that there are better and more reliable

methods of maintaining the copies of the local tahies in the

CPMM.

When the CPMM is expanding an ORPL, and encounters a process

waiting for message tfxt from an operator, it can be difficult to

get the needed state information. A method is needed whereby the

443

CP M can save the OBPL and notify the PMM at the node in which

the operator resides, that this state information is desired,

The PMM must then query the operator and send the CPMM this in-

formation along with its latest state tables.

Another problem that must be resolved oncurs when related

messages cross between two nodes. An example of this is that the

CPMM may return the rights to grant access to a resource to a PMM

at the same time that the PMM under discussion sends a request to

the CPMM stating that one of its processes would like to access

that local resource. Care must be taken when designing tho

resource allocation scheme to ensure that cases like this will be

detected and the desired action (which in this case is granting

the process access to the resource) will occur. In addition,

steps must be taken in the deadlock detection algorithm to ac-

count for and detect similar problems.

V.4 Reasons for not Refining the Algorithm

Several factors led to the decision not to refine the above

algorithm to the point where it could easily be proved to work.

It was felt that with all remote resource requests going to one

node, there would be message congestion at that node, plus there

would he an extra delay due to the fact that a request must go

through the central node rather than going directly to the node

in which the desired resource resides. Another factor that i.-

fluences message congesticn is the size of the tables that will

get sent from the PMM's to the CPMM. Since database records may

44

be considered resources, these tables can get quite large, and it

would be pweferable to only send the CPMM parts of these tables,

but then there is the problem of deciding which parts should be

sent, and what the CPMM shculd do when it was not sent enough

information.

When one node is used as the center of activity in a net-

work, the network becomes only as reliable as that node. It

would be possible to have another node in the network serve as a

backup to the CPMM and maintain copies of the CPMM'S tablc ,.

There would be a delay in updating this duplicate copy, and it

would have to !e decided how often the copy should be updated.

(A great deal of overhead is involved if a message is sent to the

"backup" node every time the CPMM changed its tables.) I would

also be possible to reconstruct the CPMM's tables a., another node

by requesting information from all other nodes in the network,

thus saving the overhead involved in maintaining the duplicate

copy at a cost of added delay if the control node were to become

Inoperable for some reason. In a computer network it is desira-

ble to distribute the cohiputing and to minimize the overall net-

work problems when one node crashes. This was the major reason

it was decided not to spend tim3 refining an algorith for

deadlock detection which relies upon one node io, the network.

4

VI. Decentralized Approach to Deadlock Detection

J A "decentralized" approach to deadloc detection in a com-

puter network is based upon the premise that there should be no

centr4l or control node and that all nodes in the ietwork will

share the responsiility for detecting deadlocks. In addition,

the failure of one node should only affect the processes of that

node trd the processes ot other nodes which are accessing that

node's reso,:rces. The amount of duplicate prccess and resource

state Information among the various nodes in the network will be

kept to a minimum, and each node will he requested to help cheek

for a deadlock only when at least one of its p.-ocesses or

resources is involved.

VI.1 Allocation of Resources

A process management module (PMM) located at each node will

always have responsibility for granting access to resources lo-

cated at that node. Whenever a process requists a resource, the

request will be processed by the PMM at the same node as the

process. This PMM will determine if the desired resource is lo-

cal or if it is located at a different node. (Message text

should be treated as loeal to the node of the sending process.)

If it is a tocal resource, then the PMM can immediately leterr~ne

if the desired access may be granted or If the process must be

hlocked waiting for the vailability cf the resource. if the

request is for n remote database object, then the PMM must, block

the process and send a remote database object reqest (RDOR) to

46

the PMM in the node which contains the desired resource. Upon

receipt of an RDOR from another node, a PMM will determine if the

requesting process must remain blocked or if it may be granted

acceas to the desired resource. If access is granted, a remote

database object assignment (RDOA) is sent to the PMM in the node

in whi.,h the requesting process resides. Upon receipt of this

RDOA, the PMM will nwaken the proper process and notify it of the

resoirce assignment. If the process must remain blocked, no

message is sent to the node. in which the process resides. The

details of implementing this feature are not desctibed, as they

are not relevant to the scope of this Thesis.

When a process reaches a commitment Foint, the PMM at its

node will release all the database resources that the process had

access to and notify the necessary processes that no more mes-

sages are forthcoming from the specified process. All local

resources can be immediately allocated to other processes in ac-

cordance with the rules for resource allocation, and messages

must be sent to all nodes which had resources allocated to the

process, informing their PMM's of the reaching of a commitment

point. Upon receipt of such a message, the PMM will

appropriately update its tables and assign the resources to other

processes in accordance with the rules for resource allocation.

Vr.2 Deadlock Detection

When a PMM determines that a resource at its node can not

currently be allocated to a process that requested it, the PMM

47

creates an OPPL (ordered blocked process list) with a process

entry for the blocked process. It then expands the OBPL until 1)

a deadlock is detected, 2) it is ascertained that there is no

deadlock, or 3) the PMM does not have enough information to fur-

ther expand the OBPL. (Note that if a database object has been

requested, the OPPL is created in the node where the database

object resides, whereas if message text has been requested, the

ORPL is created in the node where the requesting process

resides.) The PMM starts expanding the newly created OBPL in

sten 10 below. When a PMM receives an ORPL from another node, it

starts in step 1 below in an attempt to complete the expansion of

the ORPL. The reasoning behind each step is contained in the

next section, and these explanations should be read before one

attempts to verify the correctness of the algorithm. It should

he noted that within the algorithm, PX and RX are names of vari-

ables whose contents represent pocesses and resources, respec-

tively, even though they are sometimes used as though they were

process and resource names themselves.

1. Set RX to the value contained in the resource
identification portion of the OBPL. If RX represents a
resource which is local to the node expanding the OBPL,
then go to step 2, otherwise go to step 8.

2. Verify that the last process added to the OBPL is still
waiting for RX. if it isnit then discard the OBPL and
halt, otherwise go to step 3.

1. Let PX be the process controlling RX. (If there are J
shared readers of RX, then repeat this step once for
each reader.) If PX already has a process entry in the
ORPL, then there is a deadlock and the PMM must take the
appropriate action. If PX is not in the OSPL then go to
step U.

4. If PX represents a process which is local to the node
expanding the OBPL, then go to step 5, otherwise go to
step 7. A

5. If PX is autive, there is no Oeadlock, so discard the
OBPL and halt. Otherwise go to step 6.

6. Append PX as a process entry in the OBPL and go to step10.

7. Append PX as a process entry in the OBPL. Place RX into
the resource Identification portion of the OBPL and send
the OBPL to the PMM in the node in which PX resides.
Halt.

8. Verify that the last process added to the OBPL still has
access to RX. If it doesn't, discard the OBPL and halt.
Otherwise go to step 9.

9. If the last process added to the OBPL is active, there
is no deadlock, so discard the OBPL and halt. Otherwise
go to step 10.

10. Get the name of the resource for which the last process
added to the OBPL is waiting and call it R%,. If RX
represents a resource which is local to the node
expanding the ORPL, go to step 3, otherwise go to step
11.

11. Place RX into the resource identification portion of the
OBPL and send the OBPL to the PMM in the node in which
RX resides. Halt.

VI.3 Explanation of Steps in the Deadlock Detection Algorithm

The following is a description of the reasons for including

each step in the deadlock detection algorithm described in the

previous section. Each numbered paragraph below corresponds to

the step with the same number in the previous section.

1. An OBPL will be sent to a node when it must be deter-
mined what process controls a given resource, or what
state (active or blocked) a given process is in. If the
resource that was named in the resource identification
portion of the OBPL is local to the node that just
received the OBPL, then in order to expand the OPPL the
PMM needs to know what process has access to that
resource and it goes to step P, otherwise it goes to

49

step 8 in order to check th2 state of the last process

to be added to the OBPL.

2. It must he verified that the last process added to the
OBPL is still waiting for RX because it is possible that
while the ORPL was sent from the PMM in the node con-
taining the process, the PMM in the node containing RX
sent a message stating that the process has been granted
access to RX. If this process is no longer waiting for
RZ, the state that was assumed when the OBPL was sent no

longer txists, and the OBPL can be discarded.

If RX represents a databa3e object, then the last pro-
cess added to the OBPL is still waiting for RX if it is
still queued for access to the database object. If RX
represents a message in a message group, then RX is
qualified by the sequence number of the message within
the message group that is desired. (If the process has
already received N messages over the specified connec-
tion, then it is waiting for message number N+1 in the
message group.) The process is still waiting for the
specified message only if the number of messages already
sent to it over the given connection is less than the
number that qualified the message group name,

3. If PX already has a process entry in the OSPL, then
there is a loop of processes each waiting for a resnurce
that is controlled by the next process in the loop, so a
deadlock has been detected. If PX does not have a pro-
cess entry in the OBPL, go to step 4 in order -o expand
the OBPL further if PX is not active.

If RX is a database object which has J shared readers,
then a copy of the OBPL must be made for each of these
readers because the process that requested access to RX
will not be able to access RX if the process is in a
deadly embrace loop involving any one of the J readers.

4. If PX is local to the node which is expanding the OBPL,
then the PMM can immediately check the state of PX, so
it goes to step 5. If PX is not a local process, the
ORPL must be sent to the node in which PX resides, so
the PMM goes to step 7.

5. If PX is not currently blocked waiting for access to any
resources, there can be no deadlock currently involving
PX. If PX represents an operator, the OBPL must be
queued waiting for state information about the operator.
The PMM will then ask the operator to enter information
about his/her state. The acceptable operator responses
are 1) that he/she is waiting for a message over a given
operator connection, 2) that he/she is active, or 7) a

0

regular message over an operator connection. If the
operator sends a regular message, or states that he/she
is active, then there is no deadlock and all the OBPL's
that are queued for state information about this opera-
tor will be discarded. if the operator states that
he/she is waiting for a message, then the PMM can (by
the use of the given operator connection) determine what
process can send the message that the operator desires,
and the PMM can then further expand the OBPL. It may be
desirable to "time out" a non-responsive operator, as
operator inaction can stall the system and perpetuate an
undetected deadlock.

6. PX is blocked, so insert it as the last entry In the
OBPL and then go to step 10 in order to further expand
the OBPL.

7. Insert PX as the last entry in the ORPL even though the
PMM does not know the state (active or blocked) of PX.
(This will be checked by the node that will receive the
OBPL.) Place RX into the resource identification
portion of the OBPL to indicate that PX currently con-
trols RX, and the state of PX is needed information. If
RX represents a message within a message group, it is
qualified by the sequence number of the message within
the message group that is desired. The PMM therefore
sends the OBPL for further expansion to t'i PMM in the
node which contains PX.

S. It must be verified that the last process added to the
OBPL still has access to RX because it is possible that
while the ORPL was sent from the PMM in the node con-
taining RX, the PMM in the node containing the process
sent a message stating that RX has been re)eased by the
process. If the process no longer has access to RX then
the state that was assumed when the OBPL we 53eium no
longer exists, and the OBPL can be discarded.

Q. If the last process added to the OBPL is not currently
blocked waiting for access to any resources, there can
be no deadlock currently involving the process. If the
process is blocked, the PMM goes to step 10 because the

I process already has been inserted as the last process
entry in the OBPL.

10. Step 10 can be reached from step 6 or step 9. In either
case, the last process added to the ORPL is IocEil to the
node which is expanding the OBPL, so the PMM can find
out what resource the process des.res access to. Set RX
to the name of this resource. If RX is local to the
node that is currently expanding the ORPL, the PMM can
continue to expand the ORPL, so it goes to step 3,

5!

otherwise it goes to step 11.

11. To further expand the ORPL, what process has access to
RX must he known, so the PMM sends the OBPL to the PMM
in the node in which RX resides. Place RX into the
resource identification portion of the OBPL to indicate
that the last process added to the OBPL is blocked
waiting for access to RX and what process controls RX is

needed information. In the case where RX represents A
message within a message group, it is qualified by the
sequence number of the message within the message group
that is desired. Send the OBPL for further expansion to
the node in which RX resides.

VI.4 Verification of the Algorithm

There are two parts in the verification of the correctness

of the decentralized algorithm for deadlock detection. The first

and most important part is to prove that all deadlocks get

detected. The second part is proving that a deadlock is not

"detected" when (except in a special Case discussed later) one

does not exist.

Part I

To prove that all deadlocks get detected, it will be

shown that once a deadlock state is reached, an OBPL will be

created that will be Passed among nodes which will expand it

until the deadlock is detected. There re two assumptions

that are required for this proof: 1) All internodal mes-

sages eventually get received by the proper nodes (and

therefore no OBPL's are "lost" in the transmission between

nodes), and 2) while the OBPL is being expanded, none of the

processes involved in the deadlock are aborted (which would

break the deadlock before it is detected) or rolled back to

a previous state (which would imply the deadlock has been

detected by the expansion of another OBPL),.

Let a deadlock consist of processes P1, P2, ... , PN,
with P1 waiting for a resource controlled by P2, ... , and PN

waiting for a resource controlled by P1. (Process ramea are

unique within a node and they can be made network unique by

qualifying them with their node names, so throughout this

proof, assume the Pi represent distinct processes.) When

each process, Pi, involved in the deadlock was denied access

to a resource controlled by another process in the deadlock,

an OBPL was created with the first process entry represent-

ing P1. One of these OBPL's must have been the last (in

time) to be created, thus the deadlock existed at that time.

(If two or more of these OBPL's were created simultaneously

and they were the last to be created for processes involved

in the deadlock, then any one in this "last group" may be

arbitrarily selected as the last to be created. The

important point is that the deadlock existed at the time the

ORPL was created, and all the relevant tables collectively

contain the information showing each process in the deadlock

waiting for a resource controlled by another process in the

deadlock.) For simplicity, assume that this last OBPL con-

tains P1 as its first process entry. Additionally, in the

ensuing discussion, a message from an operator to a

compute:ized process will not be treated as a special type

of resource because it Is assumed that oper -tor . -11I state

j
what they are waiting for when asked to do so by a PMM.

After P1 has been inserted as the first process entry

in this "last" ORPL, the PMM which will begin the expansion

of the OBPL will be 'n step 10 of the algorithm. If P1 is

waiting for access to a resource local to a different node,

then the PMM executes stops 10 and 11, and another PMM4(after receipt of the OBPL) executes steps 1 and 2, then
goes to step 3, otherwise the PMM executes step 10 ind goes

to step 3. (Since there is a deadlock, the OBPL will not be

discarded.) Now, 'no matter what F is waiting for, it can

be assumed that a PMM is about to start step 3 and it can

(i.e. it has the information in its tables) dete-mine what

process (in this case, P2) contr'1ls the resource P1 has re-

quested. There are two ways (depending on whether P2 is

local or global to the nod., in 4hich the OBPL is currently

located) in which a lrocess entry for P2 will 'e 4nserted

into the ORPL.

Case A: P2 is "local".
Steps 4, 5 and 6 are executed, then step 10 will be
executed. The PMM will then be ready to execute sti 3
or it will executP step 11 and another PMM wili exe< te
steps 1 and 2, and will be prepared to execute step 3.

Case R: P2 is "global".
Steps 4 and 7 are executed, then the PMM which then
receives the ORPL will execute steps 1, 8, 9 and 10.
It will then be ready to execute step 3 or it wili ex-
ecute step 11 and another PMM will execute st~eps 1 and
P, and will he prepared to execute step 3,

This "last" OBPL now has process entries for P1 and P2,

and a PMM is about to execute step 3 to continut the

9;

expansion of the OBPL. A PMM is now essentially in the same

position some PMM was in shortly after the OBPL was created.

The only difference is that now two processes have entries

in the OBPL, and RX is set to the resource for which P2 is

waiting, rather than the resource for which P1 is waiting.

By repeating the above procedure as many times as necessary,

the OBPL will be expanded to include process entries for

processes P1, P2, ..., PN. At this point, when step 3 is

executed, it will be determined that P1 controls the

resource PN has requested, and the deadlock will be

detected.

QEP Part 1.

Part 2

To prove that every deadlock that gets "detected" ac-

tually is a deadlock, it must be shown that an OBPL will be

discarded whenever there is a chenge in the state that was

assumed when a process entry was made in that OBPL. (The

one exception, which is ignored in the ensuing discussion,

is the case where the assumed state changes due to the

aborting or rolling back of a process, rather than having

the state change due to a waiting process being awakened and

granted access to the resource for which it was waiting.)

This condition is sufficient because if a deadlock is

"detected" when expanding the OBPL containing (in order of

insertlJn) process entries for P1, P2, ..., PM, PN, and

5'

90

there has been no change in the state that was assumed when

each process was entered into the OBPL, then P1 is still

waiting to access a resource controlled by P2, ..., PM is

still waiting to access a resource controlled by PN, and PN

is still waiting to access a resource controlled by PJ,

where PJ appears earlier in the OBPL. Thus a deadlock ac-

tually exists if one is "detected" and there has been no

change in the state that was assumed when the process en-

tries were inserted into the OBPL.

Assume that a PMM is expanding an OBPL with process

entries (in order of insertion) P1, P2, ..., PK, PL. If the

algorithm is correct, then P1 is waiting for access to a

resource controlled by P?, ..., and PK waiting for access to

a resource controlled by PL. Now assume that this state

does not hold. That is to say, for some Pi, Pj with adjac-

ent process entries in the OBPL, either Pi is not waiting

for access to the same resource (say RQ) for which it was

waiting when it was ascertained that Pi was blocked and that

Pi should have an entry in the OBPL, or PJ no longer -on-

trols RO. It will be shown that whenever this situption

occurs, it will be detected and the OBPL will he discarded.

It can he assumed that Pi and Pj are PK and PL respec-

tively, because if tile state has changed from what was as-

sumed when Pi was inserted into the OBPL, then it either

changed before a PMM checked to see what Pj was waiting for,

Pj was not blocked, or the state changed after, there was a

56

similar state change involving PJ and the next process in

the list. (The latter claim can be made because if Pi. was

waiting for access to RQ which was controlled by Pj, and Pj

controlled RQ and was blocked at the time that it was

decided to further expand the OBPL, the only way the assumed

state could change would be for Pj to incur a state change

and be awakened so that it could release RO.)

In order to show that PK is still waiting for RQ, and

that RO is still controlled by PL whenever it is decided

that another process should be added to the OBPL, two cases

must be considered. 1) PL, PK and RQ are all located in the

same node, and 2) PL, PK and RO are located in two or three

different nodes in the network.

Case 1.

Due to the restriction that operators can only

communicate with processes, there are three possible

combinations of the types (process or operator) of PL

and PK. (The resource type of RQ is either unimportant

or uniquely determined by PK and PL.)

Case A: PK and PL are both processes.
Once PK has been inserted into the OPPL, ar'd the
PMM in the node in which PK resides is expanding
the ORPL, the PMM determines that PK is waiting
for access to RO and that PL controls RQ. It then
inserts PL into the ORPL if PL is blocked anu
discards the OBPL if PL is active. Since the PIM
has exclusive use of' the state tables in its node,
there is no way the assumed state will change un-
til after the OBPL is discarded, sent to ancther
node or queued waiting for state information about
an operator (in which case the state can not
change until after the operator states that he/she
is active or sends a message to a process, both of

57

K which result in .-,he OBPL being discarded).

iCase R: PK is an operator and PL is a process.
PK is not inserted into the OBPL until the opera-
tor states that he/she is waiting for a message

over a given operator connection (RQ). The PMM in
the node in which PK resides then determines that
PL is the process that can send the desired mes-
sage. If PL is blocked, it is inserted into the
OBPL, otherwise the OBPL is discarded. Since the
PMM has exclusive control of the state tables in
its node, the assumed state can not change until
after the ORPL is discarded, sent to another node,
or queued waiting for state information about an
operator.

Case C: PK is a process and PL is an operator.
PL is not inserted into the OBPL until the opera-
tor states that he/she is waiting for a message
over a given operator connection. PK is still
waiting for a message from PL because the OBPL
would have been discarded if any message text had
been received from the operator since the O8PL was
queued waiting for state information about the
operator. (Note that it is possible that the de-
sired message may have been sent by the operator
before the OBPL was queued, but it has not been
given to PK because calls to the PMM are processed
in a first in, first out fashion. In this case
though, the OBPL will be discarded before any
state nes:sage from the operator is processed, be-
cause the desired message text was sent before the
operator state message.) The OBPL will then ei-
ther be discarded or have another process entry
added to it, because an operator can only wait for
a message from a process located at the same node.

Case 2.

Whenever an OBPL is sent between nodes, it must be

verified that the state that was assumed when the OBPL

was sent is still valid. Operators do not cause any

ORPL's to be sent between nodes (because they only

communicate with processes at their own nodes), thus in

this discussion PK and PL are always processes. There

58

are four combinations of the resource type of RO and

the locations of PK, PL and RQ.

Case A: RO is a database object located in the same
node as PK, but different from PL.
After it is ascertained that PK is blocked waiting
for access to RQ, it is determined that PL con-
trols RQ. PL is then inserted into the OBPL
(after the entry for PK) and the OBPL is sent to
the PMM in the node in which PL resides. When the
PMM receives the OBPL, it first verifies that PL
still controls RQ. If it doesn't, there has been
a change in the assumed state (PL has released
HQ), and the OBPL is discarded. Note that the
OBPL is also discarded if it is determined that PL
is not blocked.

Case B: RO is a database object located in the same
node as PL, but different from PK.
After it is ascertained that PK is blocked waiting
for access to RQ, the OBPL is sent to the PMM in
the node in which RQ and PL reside. Upon receipt

9'j of the OBPL, this PMM verifies that PK is still
waiting for access to RO. If it isn't, there has
been a state change (PK was granted access to RQ),
and the OBPL is discarded. The OBPL is also

* discarded if it is determined that PL (which con-
trols RO) is not blocked.

Case C: RQ is a database object]ocated in a node
which contains neither PK nor PL.
After it is ascertained that PK is blocked waiting
for access to RQ, the OBPL is sent to the PMM in
the node in which RO resides. Upon receipt of the
OBPL, this PMM verifies that PK is still waiting
for access to RO. If it isn't, there has been a
state change, and the OBPL is discarded. If PK is
still waiting for access to RQ, then the PMM in-
serts PL into the OBPL (since PL controls RO) and
sends the ORPL to the PMM in the node in which PL
resides. After the OBPL is received, the PMM then
checks that PL still controls RO. If it doesn't,

there has been a change in the assumed state, and
the OBPL is discarded. The OPPL is also discarded
if it is determined that PL is not blocked.

Case D: RQ represents message text and PK and PL are
located in different nodes.
After PK is inserted into the ORPL because the
process is waiting for message text in messape
group RO, RQ is qualified by a message number.

q

The OBPL is then sent to the node in which PL
resides. PL will only be inserted into the OBPL
if it is blocked and the specified message has not
been sent (which implies PK is still in the state
it was in when it was inserted into the ORPL),
otherwise the OBPL will be discarded.

It has been shown that whenever the relevant portions

of the overall network state differ from the state that was

assumed when process entries were inserted into the OBPL,

the situation is detected and the OBPL is discarded.

Therefore it is impossible to detect anything but deadlocks

since a deadlock is never "detected" unless a PMM wants to

insert a process into an OBPL when there is already a pro-

cess entry in the OBPI. for that process. It has thus been

proven that the decentralized algorithm only "detects"

deadlocks.

QFD Part 2.

OFP necentralized Algorithm.

VT.5 Some Properties of the Algorithm

It should be noted that all references to processes in the

previous sections actually referred to process "commitment units"

(the period between commitment points), and the fact that

commitment units within a process are network unique allows a

Ieadlock to be detected at a node different from the one which

contains the process that was found to already have a process

entry in an ORPL. This situation can arise if the process under

discussion controls a remote database object, and the PMM at the

node in which the database object resides wants to insert the

60

A
process into the OBPL due to its controlling the above mentioned

database object. The OBPL need not be sent to the PMM in the

node in which the process resides to verify that the process

still controls the database object, because the process has not

reached a commitment point (by virtue of the fact it alr-dy has

an entry in the OBPL) and therefore has not released any d tabase

objects.

All resource requests will be handled with minimal delay

because, for any request, the only nodes involved are those which

contain the associated process and resource. (No informationi is

needed from any other nodes to process the request.) The algo-

rithm will function properly regardless of the resource

allocation scheme in use, since the needed information about a

resource is what process (or processes) currently controls it,

not the order in which processes will he granted access to the

resource in the future. (The latter information is necessary

only for deadlock avoidance algorithms.)

While a PMM is expanding an OBPL, all other PMM's may be

processing resource requests and releases. A PMM need only see a

consistent state within its own node in order to expand an ORPL.

Tthe restriction that a PMM can not process resource requests and

releases while it is expanding an OBPL can be removed if the

decentralized algorithm is modified slightly. In step 10 the

branch to step 3 would be eliminated (and therefore always go to

step 11 after step 10), and then in step 11 a PMM may send an

OPPL to itself. The new restriction would be that no resource

requests or releases can be processed while a PMM is executing

steps 1 through 11, although resource requests and releases could

be processed between the execution of step 11 and step 1.

The same deadlock can be detected more than once if pro-

cesses and resources located In two or more nodes are involved.

This situation will occur if two or more processes request

request resources at approximately the same time, resulting in

OSPL's being created starting with different processes in the

same deadlock loop. It is important to note that no matter how

lonma it takes for OBPL's, remote resource requests, remote

resource assignments, message text in message groups, and notJ-

fication of a remote process termination to travel between nodes,

the algorithm still funetioin as expected due to the verification

steps that a-e included arnd t'ae fact that once a deadlock exists,

it will not be b:-oker until after it lz detected and recovery

action is initiated.

[6?

VII. ADT Model of the Decentralized Algorithm

A functional model of the decentralized algorithm described

in the previous chapter was designed and created using the

facilities of the Architectural Definition Technique (ADT). The

model was designed so that the algorithm could be easily tested.

Additionally, by designing the model at the same time that the

algorithm was being refined, several deficiencies of early ver-

sions of the algorithm were detected and corrected. (See section

VII.P and [1 for information about ADT.)

The model was written in PL/I and runs on the Honeywell

Vultics timesharing system. It was coded for ease of use and

readability, and is not intended to suggest the most efficient

way of implementing the algorithm in a computer network. A pre-

requisite to the use of ADT is an ability to understand the con-

cept behind Data Structure Diagrams.

VII.1 Data Structure Diagrgms

An information structure can he described by a Data Struc-

ture Diagram. A particul. object ir an information structure is

referred to as an "entity", and an entire group of similar enti-

ties is called an "entity-class". (They are characterized by a

rototv called An "entity-tyPe ") The grouping that associates

one or more entities of the same entity-class with one entity of

a second entity-class (same or different type) in a subordinate

relationship is known as an "entity-set". In a Data Structure

riagram, a block is used to represent an entity-type (the

mI

entity-type name is written inside the block). A "set-class" is

II! a collection of similar entity-sets. (They are characterized by

a prototype called a "set-type".) An arrow represents a

set-type. It designates (by pointing from) the entity-type that

"owns" the set-type and designates (by pointing to) the

entity-type that serves as the "members" of the set.

There is a 1 to n relationship between the owner and members

of an entity-set: n may be zero, one or more. For each owner

there may be any number of members, but for each member, there is

only one owner in any set occurrence. A dashed arrow is used to

represent a set-type where the member relationship may or may not

exist. This Is called a "sometime" member relationship. When

there can he only one member ir an entity-set, a line (rather

than arrow) Is drawn between the owner entity-class and member

entity-class. A dashed line is used when there can be a 3ometime

one-to-one relationship.

I A situation can arise where a set-type can have more than

one type of entity in the member role. In this ca3e a multihead

arrow is used to represent the set-type. Similarly, a multitail

arrow is used to represent a set-type where more than one type of

entity can assume the owner role (although each member has only

one owner). A more detailed explanation of Data Structure

niaRrams can be found in r21.F ATII.P Architectira] Definition Technique

APT is an approach to arriving at a complete, concise,

64

non-ambiguous functional specification of a software or hardware

system which is totally independent of packaging considerations.
To use ADT, one must describe the system state variables in terms

of occurrences of entity-types, attribute types and set-types,

and create a user interface as a set of machine processable

function definition algorithms.

An example of an entity-type is "node" in a computer net-

work. Each node in the network must have a name, which is an

attribute of the entity. The entity-type and its attributes must

be declared. In addition, all entity-sets which a node may

belong to as a member or owner must be declared, and the rela-

tionship ("membler", "owner", or "recursive") must be stited. A

node is a member of the set of all nodes in a network, but It is

the owner of various resources and processes located at that

node. The manner in which entities and their attributes and set

relationships are represented in the machine is irrelevant to the

4 oal of achieving a functional specification. Therefore the ADT

user is rel.eved of this burden.

A function definition algorithm is a body of code which

specifies what action 3hould take place in response to a given

external stimulus. A function definition algorithm has several

responsibilities. 1) It must validate the input parameters, 2)

It must execute the logic of the function, 3) It must access the

system state tables and update them appropriately to reflect the

action taken, and 4) It must provide an external response repre-

sentlnp the action (or lack thereof) that has taken place. A

65

function definition algorithm usually includes a series of calls

to the ADT modelling subroutines.

One integral part of ADT is a set of procedures which faci-

litate the modelling of the "system state". These procedures

provide the capability to create and maintain a network

structured database which holds the entities, attributes and re-

lationships used to model the system.

A functional model created using ADT can be exercised and

"validated" by the creation and execution of a sequence of

commands. (Calls to the various function definition algorithms.)

Any number of commands can be executed so that the model can be

ohserved in order to determine if it acts in accordance with

expectations.

Facilities are furnished in ADT to save these sequences of

commands (scenarios) and to automatically execute them. There

are also facilities so that the system state can be saved and

restored. Display facilities are provided which permit a de-

tailed examination of the system state without altering it.

Using these facilities it is easy to construct experimen'3, alter

them and examine the results at any time.

ADT is a deterministic system, and the machine is always in

a stable state during the period between calls to the various

function definition algorithms.

VT.A The Deadlock Detection Model

The deadlock detection model which runs using ADT was de-

(6

signed to Le driven entirely by the user of the model. Al the

nodes in the network must be created by the model user, as are

processes and database resources located at each node, In addi-

tion all operators at each node must be declared. Each node in

the network must have a unique name. Operator names and process

names appear together in the same name space and must be unique

within each node. They are qualified by the node name to make

them unique in the network. Database objects must also have

unique names within the set of database objects at a node.

Process wait situations may arise as a result of requesta

for message text in a mensage group or over an operator connec-

tion, or requests for access to a database object, but operator

wait situations are not forced by the system because operators do

not request message text, they only take it as it comes over an

operator connection. All requests by processes for resources

munt be entered by the model user. The model will prvcess the

reauests, and allocate the desired resources, if possible,

otherwise the requesting process will be blocked. When message

text is requested, the message group name (in the case of process

to process communication) or operator connection inamc (for oper-

ator to process ,mmunication) must be given. With the model,

hefore message text in a message group can he received by a

rnr q- t .p ,,uot -irL be inirt.iatea by tne process

which can send the messages, and then he accepted by the process

that will receive the messages in the message group. (The mode)

user specifies when this takes place.) Actual systems iav allow

'1 I II I

4message groups to be accepted by a process before another process

initiates it. An operator connection must be establixhid 'by the

model user) between an operator and a process at the same node

before a process can receive message text over the operator con-

nection. This model does not support the sending of messages

from A orocess to an operator over an operator connection because

typically messages from a process to an operator are not queued

for receipt by an operator, they are simply printed at the

'"porator's terminal without an explicit operator requetn.

In ordir to make the model easier to use, It was dicided to

make message group names and opel-ator cc nection names unique

within the network.

In a iomputer network it is probable that message text may

be sent hy either process involved in a -onne,.tion through' which

tley are communizating. (Thi3 is a two-way connection.) The

model only allows the initiator of a message gto,!p to send mes-

spoe text over the associated connection because a two-way con-

nection can he simulated using two one-way cunn-,ctions, with eacr

process involved being tho initiator of one of the message

groups. The sender and receiver of message text in a :zssage

proup are thus uniquely determined by the message (,rcop n,e,

therefore the model user need not type a process namt wh i,

ceusing action to be taken to simulate the sending or receiv1-,X

of message text. (Similarly, th? sender and receive- of mc: age

t xt over an operator connection are uniotiely deterrmined because

the ,pod.,l only allows message text to go from th, operator to the

6P

associated process.)

Each node will need to maintain some information about the

other nodes in the network. (It needs to know about remote pro-

cesses that have requested access to at least one of its
3

resournes, and it needs some information about remote resources

that have been requested by at least one of its processes.) The

model iS designed to create a set of node tables (one table for

each node in the network) at each node in the network. Each node

will use its set of node tables to maintain the information it

needs about all the nodes in the network.

Control messages are used by the model to simulate the

transmission of most types of internodal messages. When a mes-

sage must be sent between nodes, the model will cause text to be

printed at the model user's terminal giving the model control

message number and stating the destination node and what the

message represents. At the time the model user would like the

destination node to receive the message, he/she must issue a

command to the model to recoive the associated control message.

ORPL's, message text within message groups, and resource

allocation messages are all sent between nodes via control

messages. This mechanism was selected so that the effect of

internodal messages being delivered with varying delays could be

;n...-n..... w ,ozade Lia tne model allows to

be processed without user intervention is the one that would be

associated with the 4nitiating of a message group. There is no

need to model the delay of a message for this because the node in

which the accepting process of the message group r'esides must be

aware of the initiation before any checks for deadlock involving

that message group will be made.

The types of resource allocation messages that may rass be-

tween nodes are 1) requests for access to remote database

objects, 2) notification that a process has been granted access

to a previously requested database object, and 3) notification

It that a process has released a database object. If the model user

enters a process request for a remote database object, the model

5. will block the process and send a control message (representing a

remote resource request) to the node in which the desired

database object resides. (Since deadlock detection is being

modelled, and resource allocation need not be completely

simulated, the model first looks across nodes to verify that the

requested database object exists before it sernds the control

message.) After this control message is received and the desired

database object can be allocated to the aforementioned process, a

control mes3age stating that the process has been allocated the

desired resource is sent to the node in which the process

resides. When this new control message is received, the process

will be awakened. Although the release of database objects is

not necessary to test an algorithm for deadlock detection, a

command to allow a process to release a single database object

was included in the model for debugging purposes. When a process

releases a remote database object, a control message is sent to

the node in which the database object resides. The model does

7 0 m m •m w W

not simulate the automatic release of all resources controlled by

a process at the time the process reaches a commitment point.

This is a feature of process and resource management, and is not

relevant to the simulation of a deadlock detection algorithm.

In order to create deadlock situations, processes must be

able to gain control of some database objects. The model uses a

first-in-first-out allocation scheme for database objects. A

process will be blocked if 1) it requests any type of access to a

database object that has been exclusively assigned to another

process, 2) it requests any type of access to a database object

V which already has other processes waiting for access to it, or 3)

it requests exclusive use of a database object and some process

currently has access to the desired database object.

In order to adhere to the belief that the model should be as

simple as possible, the model, in expanding an OBPL, does not use

the decentralized algorithm exactly as described in the previous

chapter. In step 10, the branch to step 3 was removed, thus step

11 is always executed after step 10. When step 11 sends an OBPL

to the node in which it is already located, further expansion

takes place immediately. Steps 1 and 2 then get executed

unnecessarily because RX is properly set in step 10, and the

state tables have not been changed during the expansion of the

.r. . . cs to t t: L r itLu 6ne 05PL is slil

waitinp for RX. This implementation was chosen to simplify the

coding of the function definition algorithm used to expand

OPPL's.

71

Appendix I contains a Data Structure Diagram for the

deadlock detection model, plus a description of the entities and

relationships shown In the Diagram. Appendix II contains a brief

description of all the user visible functions In the model, fol-

lowed by the P/T code of the function definition algorithms

which define the model.

VII.4 Test Cases run on the Model

Using the model, several deadlock and near deadlock

situations were entered to demonstrate various features of the

deadlock detection algorithm. A feature of the ADT system allows

a user to save a series of commands in a file, and then type

"scenario <file name>" to have the commands executed in order.

In each of the cases given, after the system was reinitialized,

but before the commands specific to each example were executed,

the commands in file "demoO" were executed. The files, along

with the output that resulted from the commands in the files,

appear in Appendix III. The scenarios are well annotated, and it

should be noted that commands to the system appear flush with the

margin, whereae output from the Deadlock Detection Model is

indented.

The deadlocks created range from one involving two processes

and two resources located in a single node, to some involving

han. "iv the, mna"h f i

resources located throu'hout a three node network. By creat!ng

the same deadlock, but altering the order in which processes get

72

blocked and the order in which internodal messages are allowed to

arrive, it is shown that the number of times the same deadlock is

detected depends on how close (in time) some processes in the

deadlock get blocked, and on the locations of the various pro-

AI cesses and nodes. (The model works properly regardless of the

"simultaneous" processing of commands at various nodes.) Appen-

dix III also includes state diagrams for the test cases which

appear in that Appendix. For the cases where a deadlock is cre-

ated, only the final state is drawn (a key to understanding the

diagrams is included), wherea s dr (a ey where there is no

deadlock, an important interim state is included in addition to
i the final state.

The restriction stated in Chapter 4 that a process can not

gain access to a database object, release it and request it again

before reaching a commitment point, was included to rule out the

situation that is shown in "demobug". (The scenario was

included for demonstration purposes only.)

7

VIII. Suggestions for Further Research

After a deadlock is detected, at least one involved process

must be forced to rescind its request for a resource that is

controlled by another process involved in the deadlock. Some of

the problems involved in breaking a deadlock (in particular when

the deadlock is detected using the decentralized algorithm

presented in Chapter VI) are discussed below, as are some issues

that may lead to modifications in the schemes presented in

Chapters V and VI.

VIII.1 The Rollback/Retry Problem

In order to break a deadlock situation, at least one process

involved In the deadlock must h selected and be forced to

rollback (backup) to a state prior to the time at which it re-

ouested access to the resource for which it was waiting when the

deadlock was detected. If the algorithm presented in Chapter VI

is being used to detect deadlocks, then (due to the restriction

that a process cannct release a database object when it is be-

tween commitment points) the process selected for rollback must

be returned Ito its most recent commitment point. In rolling back

the process, the external effects created since the last process

commitment point must he cancelled.

To accomplish this rollback, it is necessary to undo all

scope of its current commitment unit (the period since its most

recent commitment point), and then release all the database ob-

74~

jects that were assigned to the process. in addition, all items

of message text that were sent by the process in this commitment

unit must be taken back, and all items of message text that were

received by the process in this commitment unit must be requeued

over the proper connections so that they may again be properly

received after the process resumes execution. When taking an

item of message text back, if it had already been received by the

destination process, this destination process must also be rolled

back to its most recent commitment point.

Research needs to be performed to determine an efficient

method for rolling back a process. It is possible that some

constraints may have to be placed upon communicating processes in

order to simplify the rollback problem and lessen the amount of

information about a process that must be retained between

commitment points. Some papers have been published that deal

with the problem of rolling back a database to a previous state.

(See r41 for one example.)

Use of the deadlock detection algorithm described in Chapter

VI can result in the same deadlock being detected more than once.

It therefore may be useful to develop a deterministic algorithm

for deciding which process should be rolled back, so that addi-

tional processes are not rolled back unnecessprily. Note that if

fM!L'S are created immediately after a process gets blocked, then

every deadlock will be detected with in ORPL that contains only

thp Involved processes. Thus even though a process not involved

in a particular deadlock may be waiting for access to a resourci

75

which has been assigned to a process in the deadlock, no action

need be taken when the deadlock is detected using an OBPL which

contains more than the involved processes. One possibility is to

impose an arbitrary ordering on the nodes im the network, and

always rollback a process in the lowest numbered node that is

involved in a given deadlock. This method is unfair in the sense

that processes in the higher numbered n-odes will rarely be forced

to rollback to a previous state. Perhaps a fairer method is to

attach a cost factor to each process entry in an ORPL. This cost

factor will represent the cost (for the associated process) of

computation to date In that process commitinent unit. The process

with the lowest cost factor will be rolled back with the hope

that this minimizes the overall network cost of breaking the

deadlock. It is also possible that when the same deadlock is

detected more than once, it may be cheaper (from the overall

network cost viewpoint) to rollback an extra process

occasionally, than to add the extra overhead that is needed for

the methods mentioned above. This is a topic which needs to be

studied further.

Another related topic which can be investigated involves

relaxing some of the restrictions dealing with the release of

database objects so that a process can be rolled back to a state

somewhere between the previous commitment point and the deadlock

state. This may involve slight modifications to the algorithm

descrihed in Chapter VI, but may be useful because less code will

have to be reexecuted after rollback. (It may be particularly

76

worthwhile when a process is executing a section of code where it

is sequentially requesting access to several database objects

before reading or updating any of them. Thus a partial, and

perhaps sufficient rollback could be accomplished by the release

of some of the database objects.)

VIIT.2 Optimization and Expansion of the Decentralized Algorithm

If OBPL's are created after a process has been blocked for

'X' units of time (with 'XI greater than 0), then it may be pos-

sible to occasionally eliminate the need to create an OBPL after

a given process has been blocked for 'X' units of time. When a

process is inserted into an OBPL before it has been blocked for

'X' units of time, the need to create an OBPL with this process

as the first entry is eliminated. (Additionally, the process may

be granted access to the desired resource before 'X' units of

time have elapsed, also eliminating the need to create an OBPL.)

This type of implementation would affect the scheme used to break

deadlocks, as there would no longer be the guarantee that each

deadlock would be detected with an OBPL that only contains pro-

cess entries for the involved processes.

A restrintinn prose-ted in Chanpter IV prevents a process

from requesting shared access to a database object and then
: reouestina exclusive use of tho Lmp dtnhnqa nhia* T+ ..

nosslble to allow this situation will little modification to the

decentralized algorithm.

The algorithm presented in Chapter VI requires that all

77

resources be uniquely identifiable. It may be desirable in some

applications to allow processes to wait for any one of N

identical and interchangeable resources. Inclusion of this

property would necessitate a change in the use and expansion of

OPPL's. Preliminary study shows that it would be necessary to

place control of the expansion of an ORPL with one node (which

may be different for each OBPL), since notification would be re-

quired after it is ascertained that a loop exists in an OBPL or

that an active process has been encountered. This notification

is needed because there is a deadlock involving N identical

resources only if every protess that controls one of these

resources is involved in a loop in an ORPL. (This is in contrast

to the situation where there are N readers of a given database

object and a deadlock exists if any one of these readers is

involved in a loop in an (RPL,) Rather than passing an OBPL from

node to node, the "controlling" node may request other nodes to

expand a section of the ORPL and return it to the "controlling"

node. Further study is required to determine exactly how the

decentralized algorithm can be modified to include the above

mentioned feature.

In addition, it may be worthwhile to study the possibilities

of allowing human processes to wait for events external to the

computer system (i.e. a phone call or a message from a fellow

worker, rather than only wait for a message from a given process)

and/or the possibilities of allowing a rocess to w~it for more

than one resource at a tim .

7

VIII.3 Types and Probability of Deadlock

In order to get a valid estimation of the cost of using the

deadlock deteetion algorithm presented in Chapter VI, it is nec-

esnary to get estimations as to how many processes in how many

different nodes are typically involved in e deadlock, and how

frequently deadlock can be expected to occur. Some research has

been performed dealing with the probability of deadlock in a

computer syst-m (see r6l), but to this author's knowledge, no

work has been performed dealing with the types (i.e. how many

processes in how many different nodes) of deadlock that can be

expected in a computer network.

VIII.1i Refinement of the Centralized Algorithm

The scheme presented in Chapter V was not studied

extensively. It is possible that it can be refined to a point

where little, if any, unnecessary processing takes place in order

to determine if a deadlock exists. Due to reliability factors

and communications delays, it is not recommended that a

centralized scheme be used exclusively in a network. However, a

hybrid model of the centralized and decentralized algorithms mny

Drove to be more cont effective than the decentralized algerithm

alone. This hybrid model could possibly be constructed by using

the centralized scheme for small grouDs of nodes located within a

specified distance of each other, and then usinp t-e

decentralized scheme between the control nodes for each of the14 oups using the centralized scheme.

79l

IX. Conclusions

The schemes presented in Chapters II and III were designed

to be used to help detect process deadlocks in a comnute[network

where the only allowable wait condition is for the availability

of database resjurces. Many systems only allow this type of

process wait, so there is a need for algorithms which solve the

problems that the schemes of Chapters II and III attack.

However, some alterations must be made to che scheme of Chandra,

Howe and Karp and to the decentralized scheme of Mahmoud and

Riordon before they can be used to solve the problems they

addross. It seems that these two schemes, when modified, would

result in essentially the same algorithm. This new algorithm

would require each node's resource tables to be sent to one node

in the network, which will then process all the outstanding

requests for access to database objects. (In the case of Mahmoud

and Riordon's scheme, perhaps each node would still examine all

requests.) The major difference from the original schemes is

that no resource allocations would be performed without examining

the entire network state. (i.e. requests for access by a process

to local resources must still wait for information from other

nodes) With or without modifications, the two schemes are

inefficient in that they require large tables (when the database

is locked at the record level) to ne passed between the nodes.

dditionally, each node must be capable of processing requests

which require the oresence of every node's tables in that node.

This in an undesirable constraint, because it requires

P0

minicomputers which serve as nodes within the network to have the

capacity to store (in main memory or secondary storage) the

ertire network state at one time. Although only minor modifica-

tions are required to the schemes so that they will work, they

may require some major modifications before they can be used in a

general scheme for detecting deadlock in all types (i.e. any size 4

computers and any number of nodes) of computer networks.
V,

The two "centralized" schemes presented in Chapters III and

V can both result in message bottlenecks at the control node, and

I if the control node fails, both result in a significant delay

while a new control node is established. Additionally, if the

network is geographically spread out, there can be an undesirable

delay in some cases when a process requests access to a local

database object. It is recommended that neither scheme be used

exclusively in a network which covers a large (geographically)

area or consists of a large number of nodes.

The decentralized algorithm presented in Chapter VI requires

each node to only maintain information relating to its processes

and resources. Thus the amount of storage required at each node

to support the algorithm is proportional to the total size of the

system at that node. Additionally, there is little, if any,

delay in granting a process access to an available resource.

Toe size of messages (OBPL's) Dassed between the nodon iq

directly propcrtiona) to the number of processes involved in a

chain, where each process is waiting for a resource controlled by

another process in the chain. It is felt that these chaiis (and

P1

therefore ORPL's) each involve only a few processes, and by

delaying the ereaton of OAPL's until after a process has been

blocked for 'X" units of time, the number of OBPL's thit must be

passed between nodes will be minimal. It should be noted that

the decentralized algorithm presented in Chapter VI will work

regardless of whether or not processes are allowed to wait for

messages which must ne sent from other processes within the net-

work.

With the optimization feature discusmed earlier, the algo-

rithm presented in Chapter VI is efficient and can be use

regardless of the size and composition of a computer network.

IFl

References i
1

1. 1achman, Charles W.; Bouvard, Jaques; and Reeves, Raymond
J.D. "Architecture Definition Technique: It's Objectives,
Theory, Process Facilities and Practice", Internal Memoran-
dum, Honeywell Information Systems, Billerica, Mass., No-
vember 26, 1975. (An earlier version appeared in the
Proceedings of the 1972 ACM SIGFIDET Workshop, Novembe.
1972.)

?. Rachman, Charles W. "Data Structure Diagrams", Data Base, A
Ouarterly of SIGBDP, Vol. 1, No. 2, Summer 1969, pp. 4-10.

3. Chandra, A.N.: Howe, W.G.: and Karp, D.P. "Communication
Protocol for Deadlock Detection in Computer Networks", IBM
Technical Disclosure Bulletin, Vol. 16, No. 10, March 1M
pp. 34s71- 4.1.

4. Chandy, K. Many: Browne, James C.; Dissly, Charles W.; and
ihrig, Werner R. "Analytic Models for Rollback and Recovery
l Data Base Systems", IEEE Transactions on Software

Engineering, Vol. SE-i, No. 1, March 1975, pp. 100-110.

9. Coffman, E.G.; Flphick, M.J.; and Shoshani, A. "System
Deadlocks", Computing Surveys, Vol. 3, No. 2, June 1q71, pp.
67-78.

6. Ellis, Clarence A. "Probabilistic Models of Computer
Deadlock", Report #C(J-CS-041I-4, University of Colorodo,
April 1q74.

7. Holt, Richard C. "Some Deadlock Properties of Computer
Systems", Computing Surveys, Vol. 4, No. 3, September 1972,
pp. 17q-196.

P. Mahmoud, Samy; and Riordon, J.S. "Protocol Considerations
for Software Controlled Access Methods in Distributed Data
Pases", Proceedings of the International Symposium on
Computer Performance Modeling, Measurement and Evaluation,
Rarvard Uni-versity, ambrIdge, Mass., March P31, 1976, pp.

0. murphy, J.F. "Resource Allocation with System Interlock
Petection in a Multitask System", Fall Joint Comouter
Fonference Proceedings, Vol. 33, 106-8,pp. 71-11-7.

10. Trinchieri, Mario. "On Managing Tnterference Causel by
natabase Sharing", Alta Frequenza, Vol. XITV, No. 1', 1C7,
pp. 64I-6q0.

I-w
I Appendix I

resourcSyte reus

reouc

messag

pOP ' OBPL

Operato -

a natabase
Obie~0

DataStrutureDiagam fr th ADTDeadock etecion ode

PE Et.

Appendix I Entity Descriptions

This section describes the entities which are used in the ADT Deadlock
Detection Model. Each entity is described in basically the same manner. The
format used is:

(ENTITY NAME>
<text

entity attributes:
<attribute name><text

entity owner roles:
<name of set owned by entity><text

entity member roles:
<u ne of set where entity is a member>

The sets are named in the following way:

own ername->membername

B,0th owflza , nma me rbePrjname are the names of entities. A qualifier is

used to distinguish between two sets which have the same entities as owner and

member:

owner..ame->membername(qualifier)

If there are alternate owners or multiple members, the notation used is:

ownername/owner ame/...->member_name/mmber_...... Where attribute

nines are used, they correspond exactly to the names (which include abbrevia-

etions for the entities they represent) that are used in the PL/I code of the

Model.

DATABASE_OBJECT
This represents an object within the database which is subject to exclusive
(read/write) or shareable (read only) access control. The object may be of
various levels of granularity (file, page, record, or item of record,. The
only requirement is that the entire object is treated uniformly in regard
to assignment to a process and subsequent release.

entity attributes:
dbo. name

The unique name for the database object at the node in which it
resides.

entity owner roles:
database obect->database objeot shareCdassignment

The set of shareassignment entities for a database object defining
the number of processes currently sharing the database object on a
read only basis.

database object->process
The set of processes waiting on the wllability oi the database ob-
ject.

(see node table/dbo/messageAroup/operatorconnect ion--)process)

r 8 .

Appendix I Entity Descriptions

entity member roles:
nodetable->databaseobject

process->databaseobject

DATABASE OBJECTSHATED_ASSIGNMENT
The miehanism for recording the shared assignment of a database object to a
process for read only purposes.

entity.attributes: (none)

entity owner roles: (none)
entity member roles:

databaseobect->databasee tjectsharedassignment

prooess->database__objectsharedassignment

MESSAGE GROUP
The itring of text elements which are sent from one process to another over
a specified connection.

entity attributes:
message.name

The network unique name for the message group.

me3zage .number A
The number o? messages in the mesbtige roit that have been received
by the acceptor of the message grout plus he number of aess es that
are ourrently queued at the destinaton end and have not yetbeenreceived.

message.number _rcvd
The number of messages in the message group that have been rocelved
(read)by the acoeptor of the message group.

tmessage.numbersent
The number Qf messages in the message group that have been sent
(remardless of whether or not they have currently reached the desti-
nation node) by the initiator of the message group.

entity owner roles:
mes3ae roup->process

Th set o rocesses waiting for text in ihe message group. The na-
ture of exclusive astignment of a message group to a process
preludes more than Pt e process to actually be waiting for text.

see node_t bleidbo/message.group/operator_connet ion->process)
entity member roles:

node_table->messagegroup(acr:ept)

nodetable->mssae_group init)

process->messae_group(receive)

process->messagegroup(send)

system->message_group

MESSAGE_TEXT
This represents one message within a message group when the initiator and
acceptor are located in dlfferent nodes. No actual text need be
transmitted, because for the purposes or' dead'ock detection, the content of
the messages is unimportant, and It is only neoeesarl to know how many
messages are sent and received.

86

pn I n u m m m n m n m m m mu m m m m u m n ao n mne u m mln

Appendix I Entity Descriptions

entity attributes:mag.mg..name
The message group name to which the "simulated message" belongs.

entity owner roles: (none)

entity member roles:
system->message-text

NODE
A processor in the network which includes a Process Management Module for
the purposes of resource allocation and deadlock detection.
entity attributes:

node.name
The network unique name for the node.

entity owner roles:
node->node table

The set-of tables used by a node to maintain all needed information
about the nodes in the network.

K entity member roles:
sytem-oe node

u[table used to maintain needed information about operators, processes andresources looated at a given node.

entity attributes:
node table.name

The nrme of the node about which this table will maintain informa-
tion.

entity owner roles:
node table->database_object

Tie set of database objects located in the node "referenced" by thenode table, and for which the node In which the node table resides

needs information.

nodetable->message_group(accept)
Tie set of message groups that have been initiated with the accepting
proess declared to be ccated in the node which is "referenced" by
?he node table, and located therein. (If a node table does not
reference* the node In which it is located, then this set is empty
for that node table.)

node table->message-group(init)
The set of message groups that have been initiated by processes lo-
cated in the node which is "referenced" by the node table, and 10-
cated therein. (If a node table does not "reference" the node in
which it is located, then this set is empty for that node table.)

node table->operator
Tie set of operators declared to exist at the node "referenced" by
the node table, and for which the node in which the node table re-
*i1dea nerl infnrmsation (A rnd cn need_- tc lKn M, ut th pr
ators at its own node therefore if a node table noes not *reference"
the node in which it Is located, this set is empty for that node
table.)

node table->process
Tie set or processes located in th node "referenced" by the node
table, and for which the node in which the nodi table retides needs
information.

87

Appendix I Entity Descriptions

node table/dbo/esageLgrou/operatoroonnect ion->prooess
The set of processes in a particular state. If the owner is a
node table which referenoes" the node In which it is located, then
the poces is in the ready orr unAgstste. If the owner is a
database ob ect, the the process is waitt n ro access to that
database object. If the owner is a message grow or operator con-
neation, then the process is waiting for txt in that message group
or over that operator connectiom.

entity member roles:
node->node-node-table

OBPLAn ordered blocked process list used to detect deadlock.

entity attributes:
obpl. resnmme

The name of the resource for which the most recently inserted process
into the OBPL is waiting.

obpl.res nodename
The name a? the node in which the above mentioned resource resides.

obpl .rei..type
The type (database object, message in a message group, or message
over an operator connection) of the above mentioned resource.

obpl.nmgnumb
If the above mentioned resource is a message in a r ess group, then
this ;ttribute contains the number of the message with n the message
group) that is being waitied for.

entity owner roles:
OBPL->OBPL_.process entry

The set of processes and operators that have been inserted into the
OBPL.

entity member roles:OBt;L_pass->OBPL

operator->OBPL
OBPL_ PASSThis is used to pass an OBPL from one node to another, where it can be

further expanded.

entity attributes:
obplpase.des node name

The name oF the node to which the OBPL is being sent for further
expansion.

entit owner roles:
OBPLass->OBPL

hLs is a one-to-one relationship with the member being the OBPL
that is being passed from one node to another.

entity memter roles:
svetem->OBPL pass

OBPL PROCESSENTRY
This represents a ppocess that has been inserted into an OBPL.

enl'ity attributes:
proc._entry. node name

The name of the node in which, the process that has been entered intothe OFPL resides.

88

Appendix I Entity Descriptions

pr~nry.proces~pame
pro nam of the process that has been entered into the OBPL.

entity owner roles: (none)

ent Ity member roles:-
09L->OPLprocese-.entry

OPERATOR
This entity represents a person that has been declared as an operator at a
given node.

entity attributes
operator. nie

The unique name fo r the operator In the node at which he/she is lo-
cated.

entity owner roles:

befre heycanbe urterexpanded.

operator->operator.connect ion
t The set of operator connections over which the operator may

entitymebrrls
node_table->operator

OPERATOR..CONUSCTION
Aentity via which messages are sent from an operator to a process.

entity attributes:
aop.on.name

The network unique name for the operator connection

op con.number.qd
'rhe number of messages that have been sent by the operator but have
not yet been received by the process over this operator connection.

ent ity owner roles:
Th er t o f rocess->ressii~frtx vrteoeao oncin
Th e fpoesswiigfrtx vrteoperator connection.>rcs
The nature of exclusive assignment of an operator connection to a
~reeas precludes more than one process to actually be waiting for

4see node_table/d bo/messag&agroup/operator-connect ion->process)

entity member roles:
operator->operator...onnect ion

process->operator-connection

system->operator-connect ion

PROCESS (PROCESS COMMITMENT UNIT)
T1his reprdsentt a proceas which is executing witnin a precess commitment
u nit (the period betweentprocess commitment points). Processes are unique,
as are process commitment units, therefore the model treats them as oe
entity.

entity attributes:
procese.access-type

If the process is waiting for access to a database object, this at-
tribute denotes the type ("shared" or "exclusive") of access desired.

89

Appendix I Entity Descriptions

process.name
The unique name of the process within the node in which It resides.

entity owner roles:3 process->dabetaat..object
The set of database objects currently exalusively assigned to the

roesfor read/write purposes. If a database object is notI
netdIn much a set, and its

datebaseob"Ject..>database..object..shar assignment set 1s empty, then
it is available for exclusive assignment.

Prooeee..databa se_.:a v haro4 assignment
The set of data soojc-~r~sinetentities representing

dataase bjecs asigneto avoesso acceted byea the)bais

process->mmessage groups.e
Themto esg usvih have been iaitipted by the process.

Me poces cn rceiv mesme ithese essage groups.)

Thesotof pertorconectonsover which the process can veceive

rode-table/dbo/essag...roup/operator.ooleat ion->proces

RESOURCEGRANT
Thei-norndalmesagegratin aprocess access to a database object lo-

enitsttributes:

I~enam ofthe process that is being given access to a database ob-
ject.

Yenme of the node in which the above mentioned process resides.

reagra.re name
name the database object which the above mentioned process is

gangaccess to.

res antresjiode name
Igo ameof the node in which the above mentioned database object

entiy onerroles: (none)

entiy meberroles:
system->resour~'...grant

mne internodal menna e stating -;iatl a S-Ive-a dwa'abaae object, ha6 beon r~e-
leased by a specifieg process.

entity, attributes:
res rel.dest -dbo_name

The name of the database object being released.

res rel.dest_-node_name
The name of' the node in which the released database object resides.

90

Appendix I Entity Descriptiors

rob~ rel. rel.priodsname
Ths name of the node in which the process releasing the database ob-
ject resides.

re rel.rel-Proc name
The name of ile process releasing the database object.

entity owner roles: (none)

entity momber roles:
syatem->resouroe..release

RESOURCE ..REQUEST
The internodal message in which a process requests access to a database
object located at a differefnt node.

entity attributes?
res req. access type

The tyPe ofaccess8 (*shared" or "exclusive") that has been requested.
ftre beq.4estdbo name

The name of thei database object to which access has been requested.

re~e~enodsnoejim in which the del databaeo'iet reaiden.
re req. reqjzode name

The name of ile node in which the requesting process resides.I roe9req.req..procjiame
The name of the process requesting access to the above mentioned
database object.9 entity owner roles? (none)

entity member roles:
system->resource-request

The computer network.

entity attributes:
system.last conts

The sumet o Anfroa oto messagegrus that have been initate thoghu the

system->ineasagetextoBpLas/eore.gan/e uceela/

The set of control messages that have been sent, but have not yet

represented is uniquely determined by the ent tv tvne of the member.

system->node
The set of nodes in the network.

system->op erator_connection
The set tof operator connections that have been declared within the
network.

entity member roles: (none)

91

j Appendix 1I

The ADT Deadlock Detection Model consists of &en PL/I prooedures, each

of which contains multiple entries. A deaflptloet of the Deadlook Detection

Model user visible funations begins on the next page, Ineluded In tho de

soription of a ftjnotion t the noe of the pooedvre in which that funotion

appears. The seven PL/1 procedures follow the fWation descriptions, abd

these procedures are followed by the two PL/1 include files which are used by

the various procedures. File DM1 ervroutines contains declarations of

Deadlock Detection Model rm-ations wOich are called by other functions within

the Model, and file ADTprimitives contains declarations of the AD system

functions.

The following is an index to the PL/I procedures and include files.

ADTArimitives 1441

i - 10
OBP, 12

F. 6ON 1ill
121

Rao

92

Appendix II User Visible Fu~nctions

USER VTSIBLE FUNCTIONS
AD? Deadlock Detection Mechanism

acceptag(pjgjiame, p...aooeptnod....ame,,p acceptprooname)
Declares process "p aocept.proo...nau0 located in node

"p..aoceptnodo -name" as the only proce95 that can rece'v'e messages in thie
message geup specified by "p.~gnamew. accepting is lneated within procedure
t43G.

odbo(Vinodeame , p bo..jane)
datases a data base object at the node speoifiad by "pnode name". The

dataaseobject has a "locale name specifiea by "p-dbo-name . cd5o is located
within procedure DDH.

4t-ats a n with the name specified by "p..node_name". cnode is lo-
cated within proceaure DDM.

"C cie " a p rt rconnecti n b t en operator "... ae n r c s
copon p..conae .. condeIqoes n ame adprcs

rp....roess n&hme", both located in node " on..node_name". operator con-
,~tion will have the global nan. apecildb "p-conjiname". copcon Is lo-I

cated within procedure OP CON.

oproo(n ..node..name, p..,pr-cess.. ame)
'Creates" a process with the name specified bj "pprocesa-payiae" and lo-

cated in the node specified by "pnode_name". coroc is located within proce-
dure DDM.

dclopjp..opjode..nhue, p~joperatorjiaae)
3 &lre" that an operator with name "p..oprator name" exists at the

node with name "jp..op...node...ne". dclop is located wit~iin procedure DDM.

initmg(qeg...naue, p...init node.pame, p..nitproojiaae, p-accet node name)
I&Lolares vrcess "p nit.p roc_name" lociat in de "p- ..nTt no6Ze name" as

ttet only process that cien send messages in the message grou? specifie' by i
nM...sm All messages in the message "group will bsogto a process i

the noe pecified by "p_.acceptiode.nais". initmg is located iwitriin proc.-
dupe MSG.

09-ind a essgefrca the operator to the process in operator connection
2p..connne*. OPuag is loc&ted within procedure OP_CON.

opstat(popiodenamc, po-ramO ps3tate, p~sor.nm0~
States that operator p .p name" at node "p..op node_name" is either

"Active" or "waiting" (spec iie by "p.....tate"). IPrthe operato' is waiting,
it would like to receivo a message from the process in operator eonnection
"pcon_name". opatat is located within procedure OP _CON.

rcvcin(p..contasgjiumb)
Causes the control !Aessege with number specified b "p-cant-ins numb! to

be received b h
revc is ocaed 'it n procedure RCVCM.

rrvmsg p-jig-name)
Causes a message to be "received" in measage group "p mg.rame*. If no

messages are queued then the receiving process 13 blocked. rcvinsg is located
within procedure NSM.

rcvopnsg(pcorn...ie,
Causes a message to be "received" by the process in operator connection

"p-corname". If no messages 3re queued, then the process is blocked and we
reqiestth e status of the operator involved with this operator connection.
revopmsa isA located withinj procedure OPS-ON.

93

Appendix IIUe Visible Functions

rldbo(pproc node ase, p rocess name, p dbo nodejiame, pdboame)
Causes thie datbs objeot "o. dbo naun located in the node specified byp_dbonodsname" to be released ri prooess -Lproees me" in node

Pprod nodqI_name. If additional proosase are queu" for the database ob-
jeot,t iey may be removed from the queue In Sceordanoe with the rules for
resource allocation. rldbo is located within procedure REL.

rqdbo (p.aooess..type,) "~roq-jiode..naiv, p..rooess~nau, p-dbo.nodejiame,
Handles a rgo by proefs "p.roce"wpae" (located at node

p-proc_nod"eme) for access (shared" or wexoluhive" as specified b"p.aocess type*) to the database object specified by 0p dbo name" and located
In the nod. speifid by "pdbo-node..xiam-W. rqdbo Is 16t d within procedure

sendms(pne)

sa -e a message in the message group specified by 'pjgname". sendmsg
is located within procedure MSG.

sysgen
"Creates" (initializes) the system. sysgen is located within procedure

DDM. Internally it also has the name "oolvo".

94

Appendix II Prooedure DD4

D6: procedure;
/6 This procedure is a collection of subroutines which either

creates entities needed to model the deadiock detection algorithm proposed
R b arty Goldman or performs services for other routines used in the model.
The following user visible functions are included:

CREATE DATABASE OBJECT
CREATE NODE
CREATE PROCMSS
CREATE SYSTEM
DECLARE OPERATOR

The following support routines are included:
DECLARE DATABASE OBJECT
DECLARE DATABASE OBJECT SHARED ASSIGNMENT
DECLARE CONTROL MESSAGE
DECLARE NODE TABLE
DECLARE OBPL
DECLARE OBPL CONTROL MESSAGE
DECLARE PROCESS
DECLARE PROCESS ZNTRY
DECLARE REMOTE RESOURCE GRANT
FIND ENTITY LOCATION
INITIATE OBPL /

Pt

r95

Appendix II Procedure DDM

del cont~sg..numb fixed bin
del dboref fixw 6i~17);
del 005 bit(1 hied

del xp-opl etrhee e bin(17), ohar(12));
del tesgenmbfxed bin,
del agreffiebn
dcl noderef fixqd bin(17)
del no...prenodes bit i)*

del bplpasreffixed 6iftj;,7;
del obplrepafixed bin. 1'
del opref fixl bn W,
del p.ttr~clas_name ca 4 I4

dcl pcontma~gnumb fixed bin;
del p..dbo ..name ohsr'):
del p...dbojodename char(12);
del p~dczcont~psgnwub fixed bin;
del Pdcl dbjame char 12
del p-do~ent Ityclass n~ame char 20

dl pjdllndeab..nae chr1
Wo p...dL.proo...name char 121
del p dol ref fixed b .n (17):
del pdek node name char 12)
dplntity -name char8(1;

del pntity~ref fixed bin(17);
del p-jiode name char(')
del p-obplref filod bin(17);
del poperator name char()
del p...op...node name char()
del p-ovnerrer fixed bin(17);
del p-prooeaa name char(0)
del p-proqode_name char(12;
del p...resnae char 12)
del p...res node name char(l1);
del pres...type- char(7)-
del proo..entryreleie bn1)

fixed b 1del procterf filed bin 5
del proc~tre f fixed bMni
dcl p..send .nodename char(12)
del p-g.et....lass -name ch&rt20j
del res-irant-ref fixed bin (17):
dcl seq_node_name char(12);
del sec noderef fixed bin(17)-
del tableref fixed W0(7);
del tempname char(12);
del temp-ref fixed bin(17)-
dcA' write listetyotosvral)
%include ADT...prmitives: etyotosvral)

Q t

Appendix II Procedure DD 1

/# CREATE DATABASE OBJECT 5/21/76 *
create databasm object: cdbo: entry(g node_aame, p...dbo~jiame):
if finU entityToo(noderef, "sys->node , SYS-R.EF, p...node...name, "node.name")

then do:
call write list ("Invalid node name. ", p...nodenwe,

"wdoeisnot exist .':
return;
end-

eos find onity-.loo(tableref, "node-5node-table", noderef, p_node-name,
'wnode tablo.nanew);

if finc~ntiti..loo(dboref, "node->dbo", tableref, pdbo_name, "dbo.name")
then do-

cail write...listj("Duplioate database object name");
return;
end:

call dinsert dboref, aoeMe: frirst" tableref);
call wise1t of, obo ", pdbo~name, " created in node "

writjistj"Dat*)
return;

/0 CREATE NODE 5/19/76 '
crogte node: onode: entry pgidn.)
if owner (SYS..REF, " s--o e*)

then 6
cil write..litj("Illegal request, system has not been created.");
return:
end;

call find-rirst_noderef, "sys->node", SYS..REF, nojnorenodes);
dowhilec(no.6enoe)

if ex rae no eef
then ;ee, 'oeaue) pjoene

call write_lit..("Duplicate node name");
return;
end;

call tind_next_(noderef, "sys->node", nojuorejiodes):

call crend __:ntibte nodrf, node;name" *field" 12 p- node..name);
~.1 c*!eate7-relatioaliip..(noderef, "3 s->no4~e" "smmer"5;-

- . naevt_(roderef, way ->node", "first", 8Y6 REF)-
call -eeate relatio~ship_(noderef, "node->nodeable&', "owner");,
cell lel _oa table tableref, p-.node...name):
call insert (tableref, "node->node table", "first" noderef);

/1 We will now make this new node "aware" of the existence of all
other nodes, and make all other nodes "aware" of this new node. £/

'lnoderef zn~deref;call find next_(sec_noderef, "sys-)node", noLmore_nodes);
do while Pno~ore..nodes);

/6First create a table entity for the new node to be used by
another node. 6

call del-node table(tableref, pnode name);
call insert-Cfableref, "node->nd table fi s ee noderef)
/* Now create a table entity for an existing node io be-used by the

new node. 0/
secenode-name :'extract (secLnoderef, "node name"t);
Call de 7_node_table(tabl1eref, sec node name);
call inser tjtableref, "node->node table", "first", noderef):
call find-riext_(sec-noderef, "sya-5node", nojimore-nodes):
end-

call write_list_-("Node created: ',p-nodeL_name):
return* v

97

Appendix II Procedure DDH

/V CREATE PROCESS 5/21/7C *
createe~rocess: oproo: entry(p_node nampees am)

If inetiy~oonoderet, Osys->node", POP pnode-name, "node.name)
then dot

call write list ("Invalid code name. w, p..node..name,
'doe notexistt);

return:
end:

eos finctwentity-.lo(tableref, "node->node_table", noderef, r~noe..nauze,

iffin(d..ent~tj..loc prooref, wnode->prooesu", tableref, p-prooes...naue,

"praor.name")
then do*

call write-1lisLOp li.roeatje, hces eenpevosy)elae:
return:
end;,

Ifall dcpros witrtref psam.ress.ame)sbe elrda h o*
callintserAroressag ndreturs" 0frt"/blrf

ial finsetit(pro~oe r "nodeom->praoes", tfrs" aleref);~roes~a

call write wist_(Poe lss", p.process name, "hatedn nrvodey p.ode ae);,
returni:a peao a od" ~nd~nm)

t end;

cal wr calls wrelstjsyst-re alre created): od" -nd-nm)
rreturn:

t ~en d;

call ereate..entity (SYS REF "system");
call create_attribute (4Y AEF "system.last cont~mg "fil" 10, 0);
call crmatokjaationsKip. YSLEF, "B3>ol" onr)
call crea'ue-relationship_ SYSREF, "eye->wer)
call create relationship_(SYS REF, sys->oon ro message",)onr)
call create::relationshipi S'Y- EP, "sys->mesage , "owner4)
call create relal ionship_(SYSREF "sys->opcon", "Owner")
call write_list_("System creited"S:,
return:

1*DCL DBO 52/6#
dct-dbo: entry picl.ref, pdcl dbo name): 52/6 0
/0 This procedure creates an entityy for a database obj ect with name specified

by " gdcl_dbo_name" and creates the neces.iary relationships. A reference
to t ientt is returned via "p dcl -r.3f'.

call create entity ,dc.ef"bo) -

call create-attribute (p dcl ref, "dbo.name,, "field" 12 Rwc _ nm
call create relatin~ip~c _ref, "process->dbo", Amem~,er~~~bO m)
call create relationship_ p__dcl~ref, "node->dbo", "member");
call create-reletionship_ p~.dcV-ref, dbo->dbo sh aamt". "owner"):
cratl reat p nenode/dbolmg_>processv, "owner")-,

return

Appendix II Procedure DDM

/I DCL DBO SH A 5/27/176 l
dcl dbo sh-aamt: entry I_doref);
/0 his-procedure creates an entity for a database object shared assignment

and returns a pointer to it via "p do lret" be
call createentity (p doref, 'dbo shamt");
call oreaterelatonsip '_p do_ref, "prooess->dbosh.asmt", "member);
call oreate_relatonship-Op_dol_ref, "dbo->dbo_shasamt", "member"):
return;

DCL CONTROL MESSAQ E 5/27/76 el
dclcontrolmessage: entry(dcl rot, p-do_entlty-class hare,

p doloont 9sg.nu.1 Y;.. ..
/* This procedure will establish an OBPL, a remote resource request or a

remote resource release as a control message. It will generate a control
messa e numbe- (which becomes an attribute of the entity specified by
up d.refw) and change the *system entity so that it is aware of the
new control message number. This control message number is returned via
tpdlIcont-msagnumb" G/

p dc con os .numb extract (SYSREF, "system.last cont msg") c. 1;
call alter3(5S REF, "I stem.Tast cont mag , r dcl_ontmsnumb):
call create order (pdcref Z.d!entity classname, "control-message");call create-.elatlosh p (pci _reT, "sys-3cortroLmessage', "member");
call create-attr.bute _-do re, "controU_ essage.uumber", "fLeld", 10,

return;

/0 DCL NODE TABL,,E 5/27/76 0/
dolnodetable: entry(p dolcref, p dclnode tablname);
/0 This procedure will create an entity for a node table and creates the

necessary relationships. The entity is also given the name specified by
•p docLnode ta_name". A pointer to the new entity is returned via
"p-dic_raf *

call createentity_ (p-dcl ref, "nodetable");
call create_attri ute (p acLref, "nodetable.name", "field", 12,

P-dc node _ab name);
call createrelationshi p.dcl ref, "node->node_table" 'member");
call create_relationship(p.dcoLref, "node->operator", "owner");
call create-relationship(p-dcLref, "node->processO, "owner");
call createrelationshiD--pdclrf, "node->dbo", "owner")*
call create-relationship_ p-dclref, "node/dbo/mg->process. "owner");
call createrelationshp-pdcl ref, "1nitnode->message", "owner");
call create_relationship-dpcl ref, "accept,_node->message', "owner");
return:

! I

Appendix II Prt,oedure DDM

/0 DECLAg BPL8?. 6/24/76 0/
delobpi! entrytp~obplref, p...rea node_name, p...res....ame, pex.tye).
/0 This procedure viii create an entity for an eBL Included in this

entity will be attribute fields which give the name, type and node name
for the resource that the most recently inserted process into this OBPL
is waiting for. The location of the 0DPL entity is returned via the

calcreate_re tinip_. p-a.oplref, "obpl..pas>obpl", ftember");
call create_reaionshPp-p..obplref, "operator->obpl*, "member")-
call create..relationshp .obplret, "obpl-)proo enty "ower"';call create attribute-. (p f, "obpl.re...ameT, "fid", 2 penn)

calceae.atrbt..Ap~blref, "obpl.re..ype", "field" 7,p-..iestype);
call create_attribute_ p obpiref, "obpl.re.,.nodename", "f eld, 12,

Craep..res_nde_name):
Crat a attribute (to be altered only when the resource is a message)
to indicate the nee~sage number within a message group that is being
waited for 0/

call create_attribute..(p..bplref, "obpl.msgnumb", *field", 4I, "G');
return!

/a DECLARE OBPL CONTROL 14ESSAJE 6/25/76 '
del obploont mg: entry(p-obplret, p-lestjiodename p_sennodejna);
/0 This proeue creates a control mess3 used to pass the OBPL pointed

to by "p..obpiref" from the node speoified by "nsed..node_name* the the
node specified by "p dest ..node name"

call create_entity(obQ passeibpi ~s)
call create- attribueDbl pasaref, "o5pUaas3.dest nodenaae", "field",

1.5, ?,det-ode nime)'
call create relationship- obpljpassref, "ob a-opw onr)
/0 Insert tfie OBPL into this control mesgy

call isert- p~r "obplpaas->obpi", *first", obpl oaasref);
/0 Declare the "o bpl-.pasq" as a control message 0/
call dcL..control message(obRIlpassref, "obp1_pass", cors' msgnub)
call insert (obp ~assref, sys->oontro 1imessage", "las' . SYS REF);
call write-list ("Control message n :mber ,oontms-ub 'zenE from",

p sen node-name, "to w, p deat-node~ame;
call write_Tit(representling an OBPL");
return*,

Appendix 11 Procedure DDN

/0 DECLAR OPERATOR 7/13/76 0/
doo: entry9~p-. -node-name, p...operator name);

R6Tip procedure wili create an entity ?6r an operator with name specified
by "p...operator_nme" and loc'ated at the node specified by

p...onode name* #/
H6 Ifte node* specified by "p op-node_name'l does not exist, print anerror message a~d return *

if find-entity loat nooeref, ways-)node", SYS-REF, popnodename,
"ncd -name")

then do-
cail write list ("Inmalid node name:", p op node_name,

retun; T doesnfot exist");

end;
/# Get the location of the node table for "p op node-name" 0/
eo3 = findLentity loc(tableref, -node->node 18able', noderef,

p op nd~e name, "node_table.name")T;
/I If, "p.-opeiratr vnime" was previously declared as an operator, print an

frror meesage ind return /Iif find...entityjoc(opret *node->operator", tableref, p..operator_name,
thndoperator.name")

call writLlist (p operatorname, 'has been previously*,
"declarei as an operator at node', pop.node.name);

return;
end;

/0 if Wp...operator.name* was previously declared as a process, print an
grror message and return 3

if fin4-entity-loc~ procref, "node->process", tableref, p..operator name,
Oprocese.name")

then do:
call write list p-..opeiator-.name, "has bean prevl.ously declared','ras a process at node", p..opnoe_name)
return;
end;

/* Create an entity for the opergtor and declare the necessary
relationships and attributes */

call create...entitjopref, "operator");
call create -attribute (opref, "operator.name", 'field", 12, poperator-name):call create_relationiipl .opref, 'ope.-ator->ogp con"4 "owner"*);
call createrelationship.(opref, "operator->obp " owner")-
call create_relationship_ opref, "node->operator" "mem er$;

callnser (orf, Inode->operator*, 'first", takleref;
call writ it(operatorjname, "baa been declared as an operator",

at nodeT, pop..node name)
return;

101

Appendix 11 Procedure DDN

/0 DCL PROCESS 5/27/76 0/
dclprocess: entry(p dcl-jef, p dc,1proc name):
I* This procedure wil create an ntity fr a process, give It the name

specified by 'p.4cyLrocjiame' and cpto the necamary relationships
call create-ent _ yP....doref, 'process');
call create...attribuej 0do3'.ref , 'prooessaaam', "field", 12,
all create.jttr bute 4 ref, "procesa.acoe , 'tel ',10, 08)!
Call ere&tereltonsip. a. c 0ef 9 rode->proC:oe s ,6mmber');I
call areate-relationshp.. a *dc e, "nodb/ma->pooesu,'Weber*);
Call creato_.relationshipj - a 0 re, "process->do ', 'miowner')
all1 creater jelationshi.. a p.dceft "Prooess.>4bo-s tv' & or*);
call create..relationship.a .d~ef, "proess4oL-on , 'ower' P.

~ Icall create relationship p..dcref, "sendproo-;)mesaag.', 've)
all reate..relationship p..dc ref, 'rcv~roc->messsge', "ownar");
return,

/9 DECLARE PROF8 NR 6/25/76 '
dcl-p roc..entryo entry~ _ bplref, p. ro"cnode' pproces~nsme)./4 This procedure will Create an enitty for anprocess entry inan 6 9PL.

The entity will be inserted into the OBPL pointed to by "obplref*
and its process and location of the process will be a pelifed b
"p...proess n "e and "p..proc node name', respectively b

call create...ntity-,proc-qntryrief -rocontry';
call create..rlationshlp...proc entirfrof, obpl->vroc -entryw, 'member');
call create attr bute..(proc_fnTr. , proq..ntry.proesn..name', "field',

I~ prooesl aMe);
call create attr bute..Aproc entryref, '4roetynd ae,"il"
call f ~. ~ P.roe Joden ame); po.etynd~ae,'id'
cl nsertj1p en ryre , "obpl->Vroc~fntry", "first', p...obplref);

return:

/5 DECLARE REM4OTE RESOURCE GRANT 6/17/76 6
dcl~reamres.grant: entry(pjdbqodqame p dbo~ae -rcnd a

p-.prooes .. ame, pcoon t._msg.numb ; Q.nmp.pond.jae
/6i This procedure will arercte an entity for a remote resource Allocation and

then declare it as a control message. The resource repreoented by
' dbo name' at the node represented by 'pdb...nodejame' will be

* a!T:1ocatfed to the process rep'oesented by 'p..rooens_name' at the node
rep resented by 'p~jproc node name". The ceit rol message number will be
returned via the paraiter wp oont-mg-.numb". 9/

call c'rete_entity(re rant..re , "res..rant')
call create attrbtegant reof, Nre.,rani .resnpode-name",

"hield', 12, pdb0onodiname);
call create Iattribute (rao. ran...rf, "re-.grant.res~jame",

"field", 12, pdb&name):
call create. attribute_(earant ret, "res..rant.proc-node name",

"eld', 12, pro...o ~ae):
call create attribute..Aresgrant ret, "7es..rant.procname",

"held', 12, ppjrocess~name);
call dcl_control._..essage kres~grant ret, "res...rant",

call inse4resgatr "sys->controlmeasage", "last", SYS-REF);

102

Appendix II Procedure DDM

I'FIND ENTITY LOCATION 5/19/76 0/find-..entityloc: entry p..entity-ref, pset-class-name ,p wnerref,
p-entity name, p...attr_classnane) returisbt1

/* This procedure Icterutines the database address of the eniity with name4 "p..ent it ..name" (specified by the attribute "p attr clas_name") whichis ame~er of the set occurrence (designated Ey the parameter
"p-a.etclass-name") owned by the record occurrence designated by
"pownerref.

If the desired named entity does not exist, a true value 0"1"b) isreturned and "p ..entity ref" is unchanged. Otherwise a false value ("O"b)is returned and "pen Ity..ef" is updated with the database address ofthe desired entity. 0/
calleos dofrt(eprf s__et_classjiame, ';ownerre:, :os); casnn)

if eos hnpa.niy'fztm~'f
r turn (o;

initi tep nae: e xt act(enod naef, pprc s name);rs..nd~ae
do Wsiae Cpes &yp etk-ue=tmna)

/0 hisproed~call ni~etltethe reatio an e xasone o n BP. h
firs proess ten plaedprm on textlis _t pife b pprocessname":

if s atin fo ethereoure mp__eiifb: ~ e~amWadlctdi

Crat IATh E OBPL niy/n25/76 z~1wthtereorc n
cnall c~oobplbplnrefp,pros node name, p...roes_ame, p_ra pe); nm

cal dcpresnameoplref, ppro...nd~aeprcs~im)
/If The process is' waIitng eo ah meagtn wndexpmustind out theB.Th

mesag nprocers (thelcn thsae group) thatcii erd and put t'a~naiainformatn In the odeL Inpaiion if thprocnes nand .The srende
of tessge aor te inediffrcen nodese bye weamt send thed inLo hnode whi ciiaed the mpessagnoe gamoup raterethanurye top exadb o
Oiese sseif dF pres-type" "mssge
/0 C /0 et thPLenltiondo he eT ntiy e for h the rsaesgoupc and

/0s Gefrtio henume of the pessagetdersire #/
cal calbl atejbpref, obpLnae .mag aLnb", essa_umb)
call I dl p n (Orf jroc node name p ? _ _nae),

thsgenmenlWti do e m s~ ndnm

ifrainInt thelcOBPLcIn d n if thle press_ n hesne

/ he Expan rht P aay *uha/ o3be nti oe
returestp msae

en en do;
/0 etth lcaio o te nttyfo te esa103ou

Appendix II Procedure REQ

REQ- procedure;
/5 This procedure contains the subroutine which allows processes

to request database objeots for shared or exolusie us. The following
user visible function is included:

MOQ1ST DATARAS3 O9JZCT

del oO at~jWa&-nqa fixed bin-
del dfixed wint):
del tifed bin(1 I

del dbo-tableef ftixqed bin(I;
del eos bit(1)'
del exoeownerref fixed 6in(17)
del ndm.proqo..nerref fixe inB(17):del p.-aftess.typ Cher e ;
del pObo_,M ohar
del pdbojW*_nam char

del pnoderef fi I In(7
del p-proes m char
dcl prIpro. , (:
del proor _ fixed bin(17)
del ptablerer filed bit(1del r"-ree-ref fixed me(1)

dcl fired bin(1);
wrvrtines ; entry options(variable):include D)"_evr~ ns

%include AD rtt ives;

13

WTIMMM T

Appendix II Procedure REQ

REQUEST DATABASE QBJECT 5/26/-6 #/
request-dbo: rqdbo: entry (p acoss~type, p...procjoden ame, p...process-jiame,

dbo node~rnae, p boyjame z,Veriy bit*he node specifie by iyroo node ame" exists 0iffindentity..lo(pnoderef, "&yp.4 node , SY3_REF, p..proc.node..name,
thn"node name")

oalwrite list ("Invalid proess node name. ", p..p',o .node~name,
return; doesniot exist.")

/0 Veriftha the process specified by "p~.processjnarne" exists at node
p~proq node.ae" 0I

eos = ind..Elty.loc(ptableret "node->node table". -noderef,
proende.name, "no~e table.na"e1)

if findenfityooproorjf, "node->process", piableret, p-process-name,

then do:,
call writelit...("nvalid process name", p.. proess name, "at node",

pjproonode ~name, "does not exist.");
return:
end,

i* erify that acostype is ws~ered" or "exolusivt" 0/
it p gacesatype It "exclusive") I (r_#eesstype a "shared")

Then do-
oali write...litj("Invelid a~zmss type, request not processed"):
return;
end;

/0 Check It the process is blocked 0/
call tindownerjndx...roc ownerreft "node/d bo/mg- >prcess", procref);
it entity.Ji,41L~nae (ndmro~ownerref) =: "nodet rble"

then do
call write~.lit ("Invalid request, process%, to processj_ map

"at node", p..proc node_name, "is nof active.")
return:
end;

/0 Check if the process and resource are at the :.arje node. 0/
it p proc..nodejaue xp dbojiodenawe

'then do; /0 IFroces and resource are at the sam6 node 0
/*erify that the database object specified by "pbo..name"

exists at node "p dbo node name" 9/
it find_entity..lco(dbore?, iode-3Ydbo", ptableref, p-dbo.name,

"dbo.name")
then do-

call write-lit..("Invalid database object name.",
g~db6..name, "at node"f, pdbo.~w 1e name,

esnot exist.)
return;
end;

/*Test to see if the dbo ha3 already been assigned to the process*/
if inserted..(dboret, It rocess->dbo")

then do; /#Fheck if the process ha6 exclusive control
of the database object 0/

call find~owner _(exc ownerref, "process->dbo", dboref);
if procre f aexc_ownerre'

then do
cail write-list-i"Invalid request. Process",

p_,.process name, "at node",
,proc ~node_name, "already has",
exclusive control of",' p dboname,

"at node", p,_dbo_node_rame):
return:
end:

end-
elee do-

/*Check if the process has shared access to the dbo e
If ewptyj-ntersection_ (irocref, "process-)dbo sh asrnt",

Appendix II Procedure REQ

ii dboret, "dbo->dbo_sh~asmt")
then do:

call writejlist_("Invalid request. Proee",
p_.proces .me,,"at node", hs
access to", Ko-ae at no~en

end: return: p.db.pd..ne;

/0 Check if the database object mIgnt oj availa tle for assignment
if Invertd .(dboref, "process->d~o5) emptyj(dboref,

then de
N1 look the process if the database object has been

assinedto another process for exclusive use or
if thr rocesses atcurrently queued frthe

database bbjeat */
call alter_(procr~f uZsces .access_type",

callI removL_(proci'f, I ode/dbo/mg:>process");
call insert (pro ref, "node/dbo/ng >process", "last",

dE6ret ,
call write list_14Resource not availible,

process blocked.*);
call initiate obpl(p..r.pz"ode name, p....prooess

pdUcjiodename, p...dbo..name, dbom); .ae
return:
end-,

/0 Check if the request is for shared access 0/
if pac0cess..type r "sa&red"

then do; /DGive the process shared access to the desired
database object 0/

call dcl.-dbo sh-aamtZsIasatref);
call insert Tsh"amtref, 9dbo->dbo_s9t.asint", "first",

d6oref);
call insert_(shamt ref, "process->dbo_3."~smt8, "first",

procre)
call write~list pprocess name, "at node"

p~proc node.naae, *granted shareA access to",
p....bo...name, "at node", p..dbojiode..name);

return;
end;

/*The next if statement will be exec'uted if the re~iest is for
exclusive use of the database object 0/

/0 Check If any process has shared access to the desired database
qbject I/

if' empty (dboref, "dbo-.>dbo_shasmt")
then &o:

/*Queue the process for exclusiv~e use of' the database
object because at least one oth4;r process currently
has shared access to the database .ject. 0

call, at r_(r ref "poces.accessL-type"l, "exclusive");
call remov_prgcre ', node/dbo/mg:>processr);
call insert (procref, "node/dbo/nmg->process", "last",

d Uoref):.
call write listJ("Resource is not currently available"

1for exclusive use process", p-process-namel:
call write lizt (" at node", p_9roc~nodename,

is5 blocked.");'
call initiate obpl(pjnroc node namv. , p-process-name,

p-d~o-nodename, p_.d~o_name, dbo");
return:
end,

else do, /*Gra't tne orocess exclusive use of the desired
databa,e ob~iecL. /

c;--1 insert (dboref Mprocess->dbo", "first", procref)*

Appendix II Procedure REQ

call writelist.(p.process name, "at node",
P-Doo~od~nae,"is Aranted exclusive use"

return* of p. .dbojiame, "at niode", p-dbo~nodename);

end:
end:

/0 The next section will be executed when a process requests a remote
resource 3

A /0 Verify that the desired database object exists 0
if find-entty b.l o -.noderef , "sys->node", SYS.U.RE, p...dbo_node_name,

Onode .nameO)_
then do:

call write list_("Invalid database object node name.W
return: 5_dbo node-name, "does not exist.");

end;
eos =fina~.entty..lo(dbo tableref, wnode->node table", dbo_noderef,

ty d: oejae node table.name");if find_ te yJLooMd ref, "node->dbo", dbo..tbleref, pAbojiame, mdbo.name*)
then do

call write list ("Invalid database object name. ", p db ..name,
'ait node", p..dbo r ode_name, "does not exist")

return:
6nd;eos find-enity.loo(dbo..tableref, "node->node -table", pnoderef,
pdbo node .name, "node table.name");

/0 Check if the node containing The process is aware of the existence of
the desired database object. 0/

if find_entity..loc(dboref, "node->dbo"~ dbo tableref. ndboname, "dbo.naie")
then do: /0 Create local intormalion about he remote resource and

block the process. 0/
call dcldbo(dboref, _dbo...name);
call Insert -(dboref, node->dbo" '" first" dbo -tableref):
call alt r.Toef "p rocess.access,.type6, p cces...type);
call reove.,. prcref " node/dbo/ig->proces);,,t
call inaert,_(proaref, "node/dbo/mg->proces" a s", dboref);
end;

else do; /0 Check if the database object has already been assigned
to the process. If it has, print an error message,
otherwise block the process. 0/

if inserted (.dboref, "process->dbo")
then do:

call fifid owner_(exc ownerref, uprocess->doo", dborer):
if procre? z exc ownerref

then do
cai~l write-list_-("Invalid request. Process",

p-process name, "at node",
Rproc nde namne, "already has",
"exciusive ciontrol of", p- dbo -name,
"at node", pjbo_ nodenav'i);

return:
end-

end:
else do;

if empty intersection.jprocret, "Rrocess->dbo sh_asmt",
'boref, "dbo->dbo-shasmt)

then do:
call write-list.-("Invalid rpquumt. Process",

p~.process -name, "at node",
R-proc-node-name, "already has",
"shared access to", p dbo name,
"at node", p.dbo-node_name)'

return:
end-

end,
I, Legal request, "block" the process. 1

calale procrcf, "pcce-zs.access __ype", D -access_ type).

Appendix II Procedure REQ

call remove- prooref, "node/dbo/mg->process")?
call insert..(procref, "node/dbo/mga>prooess", "last", dboref):
end;

call write list ("Proces",t p,..proooeaL-jlUM "at nr dO", p-proc-node-jname,
'14il blqked while a request io sent too)

call write..list ("the node containing the desired resource");
/0 Create at' entity for a remote reou'o request and then declare it

as a control message 0/
call create-eitIt.. afJ.'t wrep..req")
call create~attribuite ma s"-r*qj'ef, erqaoe5tye,"field", 9,

P-acosa..tY _0

call creat~~ttributere o'f, Ores..eq.req.Jno"-3OJ1 , "field", 12,

call craeatr4t rs~roL~ref, Oresjeq.rq.proO..nameO, "field", 12,

'I
Iaicets&tebt PArqrf r~.rqd~-b~ae,"il" 2

p-b-

rt, ~ ~ 08nub)

-.. - - = , - ~-- .~-.-~. ~

Appendix II Procedure MSG

MSG! procedure
/V This procedure contains the subroutines wnich perform the

message management functions for process to process communication within
a network. The following user visible funotions are included:

ACCEPT MESSAGE GROUP
INITIATE MESSAGE GROUP
RECEIVE MESSAGE
SEND MESSAGE '/

del aoeept_node.nane ohar(12);
del aoeeptnode_tableref fixed bin(17):
del accept proc name char(12);
del accept,procref fixed bin(17):
del oontms-..numb fixed bin-
del eo bit(1)*,
del tnit_node name char(12);
del nit node-tableref fixe? bn(17):
del iWit proo_nae char (12);
del iniprooref fixed bin(17)
del messaeref fixed bin (17
del agref fixed bin (1;
del ndm.proo_ownerref fixed bin (17)
del noderef fixed in(17);
dcl pacoept_node_name char (0)
del p aooeptproo_name char (I)
dcl pjnit nodejname char)
del p~int rocname char()
del p_.pLnae char('):
dcl procref fixed bin(17):
del rev maLnumb fixed bin;
del senimaosgnumb fixed bin:
del write_ list entry options(variable);
%include DDserv routines:
%include ADT priiTtives;

109

Aprtndix II Procedure MSG0

/# ACCEPT MESsAGE GROUP 7/1/76 6
acceptng: entry(p-.mg-nsme, p-acceptnode.name, P...accegt-pro-name);

* ~ /0 After this procedure la executed thetprocess specified byI p-acceptproc name" (ad ocateA at te node specified by
'p.accept node-_name*) will be able to accept messages in the message

rou s ciiodby"p..mg.name" 0/
/V If ts esgeIpu pecified by 'pgname" does not exist, print

if aeromesgadreunfind..entityjo(mgref 'sys->message', SYS_REP, "..g..namie,
thn"message .name' 5
thndo:

call write list..."Invalid mIssage group name: 0, p..pgjiame,
Sdoes not exist')

return;
end;

/If the message group has already been accepted by a process, print en
error message and return 0/

if inserted-jugref, "rovY.proc->message")then do,cail write.,list_("Invalid accept message group. "~)?-g-a
retur; hasalready been accepted-By a processA,

end;
/0 If the node specified by "p...accept-.node-name' is not the accepting

node that was specified when the message group was initialized,
Srint an eor message and return'/

cal find_owne;r(accept._node~tablqref, "accept node-)aessage", maref);
if paccept..nodejare x extractTaccept-jiode...ableref, "node...table.name')

then do-
cail writei list (t,..acePt..nodenaue, 0 Is not the node that was

eT s fied to accept ", p-.pf...nme. 0 when the sessage*)
call writew ist..(" groug wa intialized. The acceptng",

retrnire'jUest is rejected j

end;
/6 If the process specified by "p-..accept...proc...nama" does not exist

at the node specified by pacp.nd-a ,pita ro
message and return yp4/p..od..nm" pita ro

if find-entityiloc(accept jprocref, *node->process", accept node_tableref,
p-.accept.procnae, "process.name")

then do:
call write list_('Invalid process name: ,p-accept..procviamue,1does not exist at node ", p-aoept-node-name)!
return;
end:

/6 If the process accepting the message group is not active, print an error
mesaeoand rturn/call findy owner_(ndm~rocownerref, nodow.dbo/mr > rocess", accept..procref);

if entitclassj-aue (nduproc-ownerref) 'r 'node_ le
then do:

o~ll write-list_("Invalid acceptmg command. Process",
retrni paccept-proc-name, "is not active");

enrd:
/0 If the process accepting the message group is the same one that

initiated it, print an error m~ess .e and return #/
call find-owner Unit node_tableret, init._.node->message", ingref);
if init-nodle -ta'lererf acccopt_nodetableref

then do:
/* The initiating arnd acceptiig nodes are the same. See if

the initiating and accepting processes are the saane #/
call find_owner_(intprotref, "sendproc->message", mgref):
iinit-procref =accept-prooref

then dof
call writs list,..i'h7.ntiating and accepting processes",

'Rare tVie eame for message group ", p-Ag name,
"acceritmg command rejtected")

110

Appendix II Procedure MSG

return!
end:

end;
/* Insert the message group entity into the accept set for the process

specified by ve-aooept4proc-name" reaop/jrce)
call isert (grer 7 rcy-roo3iesage*f, wfis",acpprre)
call writei listp mg..name, "as been accepted by ", paccept.pro...name,

retrn at nodew- "p.aoceptjiod..name);

/0INIT[ATE MESWAGE GROUP 7/1/76 0/
* ~ir~itmg* entrytppnauet p_ nit-jnode-name, p...nit...procjxame,

p...aoopt node..name):
/* This nrooedure iiil create a message group with the global name

3scified by "p..p-namew. The only process that can send messages
in this message group is specified by "p-.init...rocjname" and is located
at the node speci tied by "pjnit-.node-name". The process that will
receive messages in the given message groug is located in the
node specified by 'p...ace t_node_name". T e specific process that will
accept the messages will ge given in a subsequent call to "99cceptmgw
by the user.

/* If we have a duplicate message group name, we must print an error
"esaage and return 0/

if find~entity.loo(mgref, "sys-)message", SYS..REF, p-g..name, "nessage.namew)
then do;

call writelist..."Duplicate message group name. initmg",
return: command rejected");,

end;
/0 If the node specified by "p..jnitjaode-name" does not exist, print

and error message and return */
if find_entity-loo(noderef, "sys->node", SYS-REF, pinit_node_name,

"node .namem)
then do;

call writewlist ("Invalid nolie name: ", p..init, node-name,
Wdole not exist")

return;
end,

/9 Get~ the location of the node_table for "p init node name'
eos = find-entity-loc(imit node tableref, "no6de->nodeLEable*, noderef,

p-imit_node-name, "node table.name");
/I If the process specIfied by "p6init proc -name" does not exist at the

node specified by "p-init,_node-name" , then print an error message
and return 0/

if find-entity loc(procref, "node->process", mnit-nodetableref,
pinltproc~name, "prooess. name")

then do:
call write list ("Invalid procesa name: ", p mnit-proc-name,

w does- not exist at 11, p-init,-node_naie)T-
return!
end:

/If the process specified by "p-initproqname' is not active, print
an error message and return */

call find -owner_ ndm proc ownerref, "node/dbo/rng->processff, procref):
if' entity clss nam#?:ndMproc_ownerref) =' "nod e-table"

then do:,
call writelist ("Invalid initmg command. Process "

p-i nlproq name, " is not active"):
return;
end:

If t the node specified by "p accept-node_name" does not exist, print
A an error message and ret urn'/

if find-entity loc(noderef, "sys->node", SYS-REF, p.~accept-node.name,
"node .nrfme")

Appendix II Procedure MSG

then do
cail write list ("Invalid node name: ",p..aacept..node-..name,

Vdoeis not exist"):
return;
end;:0

IGet the location of the node table for "paooept-node-jiane"I
eos =tind-entity loc(aooeptjio~e tableref, wno e>node-.table", noderef,

p acco node...nam, Un6I4.table name").
/0 Create an, entity for a abssage group, create the necessary relationships

and attributes, n ciert the ent ity into the appropriate sets 0/
call ereate...ntiya.(ofe "message");
call areate,reaone ipD_ m gre , "sys->message", *member");
call areatereaionh p-. agref, "init...node-)ussage", "member"),
caill areatej'elationship_ agref, "aooept..nde->message"j "member');
caill create_relationship_.(mgret, "senc~proc->messagen, wmembern);
call create-reaionshp_. mgref, "rev roo->meaaagew, "member")-
call create..re atonsh p..mgref, "node/do/mg->process" "owner&)-
call create-attribute.Amgre tmessage.numibersent" "field"s i~e)
call create ettribute_ amgrn1, "message.number qd" Afield"4,O)
call create-_-.ttribute- nAgraf, "message.nber_ rovAm "fielA"j, 'I, !')
call cet trbe-agref, "mesage.name"2tfielA", 12, p..,g..name);
call insert._. ugrof, usy3->messageO, tfirst" SYS REF)-
call insert- a(gre', "iijoe)esg " irstW irnit node tabitret);

cal iner..S.~rf,"aoeptj~de-)message", "firsi.", accept....ode_tableref):
call insert7 (mtiet "sa .. pro>message",t Wf~rst, proorer).
call write_-Tisa'..(essage group" p..j.nme, Oh a been initiated*);
return:

112

Vr

Appendix II Procedure MSG

/0 RECEIVE MESSAG? 7/1/76 N/
rovung?* entrytp~mptname)*
/I th Is proedure will simulate the receiveing of a message in the me.,sage

group specified by "p..mg...name" */
/0 If the message group specified by "p.mg~name" does not exist, print

an error message and return 0/
iffind entity..lo (mgref, "sys->message", SYSREF, pjugname, "message.name")

then do-,
call wiela-ntli message group name- ", p__mg..name,

return;
end;

/If no process has accepted the message group, print an error message
qnd return 0/

if insertedjmgref, "rov...proo->message")
then do

cail write list_("Invalid rovuag command. No process hia",
retur*, wccepted message group ", p-mg-namm):

end;
/9 Get the name 4nd noe of the process that should receive the message 0
call find-owner.(acoept.proqref, "rcvjproc->message , mgref)
accept..pro...name a extract (aoceptjprocref, "process.name);
call find owner_(accept-jaodq_tablerer "acp~oe>isae", ngref);,
accept nodejname aextract (accept...no~etableref, "node table.namew):
/0 If The process specifiel by ifaocept..proc...name" is not active, print

an error mesge and return 0/
crll find owne' jndlLroq ownerref, "node/dbo/mg->process", accept,.procret):
it entity....claasname (ndm...procownerref) "m "node-table"

then do:
call write-list ("Process", accept proc name, "at node",

acmep node-name, "is not active. NO message can be"):
call write-list-T" received in message group", pjug~name):
return;
end-,

/4 Find out if the message can be received, or if the process must
be blocked #/

rcv__p.sg.numb z ext ract-(ugref, "Message.number rcvd")-
if rev11Jsgumb < extract-.(mgrmf, wmessag.num~er..qd"3

/0 Allow the process to receiLqe the message 0
revmtnm rov mg-.numb + I-
a--tr_(e -"me3ss e-ube.rcvd", rcv mag-numb);

call writelt-1t(Proces , acceptprocL nars, "at node",
accept node name, "has received");

call write~listj" a message in message group", p..)g~name):
return!
end-,

else do:
/# Block the process #/
call remove-(accept-procref, "node/dbo/mg-->process")'
call irsertj accept~procref, "node/dbo/mg->process", "first",

call writejistj "Process ", accet.proq..name, "at node",
accept node name, "is blocked waiting for a"):

call write_listj" - message in message group" pmgnane):
/# Get the name of the node that iniitiated (or "owns') the message

7'roup
Call find-owner_(mit node tableref. "initnode->message", mgref),
mnit node name =extriot fnit_nd_tableref, "node table. name"):-
/0 Cieck ?or deadlock */
call inltiate-obpl(acceptnode _name, accept~jproc-name,

j inmit,_nodename, p..msg..namP, "message"):
return:
end:

Appendix II th esg nteProcedure '430

riendmsg: rentryp fame); /176'
/* pris ocedure w1smlt h edn famsaei h esg

Ioug specified by "pjug-name" 0//I f~ t e message gopsteciried by 4p.mgname" does not exist, print
an error message and re urni0

if rin~entity-loc(agref, "sys->message", SYS_.REF, p..pg.naue, ".essage.name")
then do:

call write list...("Invalid message group name: W, p....g.name,
'Wdoes niot exist");

rasturni
end;

/9 Verify that the process that ehould send the message is active 6/
call find..owne... init..procref, "senLroc->message", mgref);
call findownernda...roc ownerref, "n Qd/dbo/mg..>proces9", init.,procref):
if entity-class-nimeI ndlLproovonerre f) a "node.tablew

then do:.
/* The process that should send the .esiage is not active. Get

its nae and node and print an error 2essage. 0/
mnit_node_name a extract_ -init_.jide.,tableef, "nodeL_ta 1e.name*);
initprocjaame z extract_ inlt...rocref, "process.nnime"
call write list ("Proces " initroe name, " at node

TntPdna: :'is notactive. No message can be 0);
call write_lis.p sent in message group ", p...,mg.name);,
return;
ends

/0 Add 1 ~o t& number of messages sent in this messae group 4/
send-ms numb z extract..3mgref, 1message.numbr..ent) + 1;
clall alter (ugref, "message.number_sentun sencusg.numb);
/0 Find out if tIhe message must be sent between n ,es e/
call find_owner_Jinit node tableref, "mnit_node->measage", mgref);
all1 find-owner (accept mole-tableref "a'ojcet_node->mesaage , mgref);,
if mnit -node -taEleref :accept_node_Lablere

then dQ
/I'Send a control message stating that a mesate has been sent in

the message group specified blXv 'jp.~name" '
call create-entity- (mssagti-ef, marW);
call create_attribute -messageref, imsg.mg-name", "field", 12,

p..mgname);
calldclcontol eg(messgeref, "mag", cont-.nsg-numb);

call insert_(messageref "sy 0ls" Y E)
/0 Get the names of the n~des involved V/
mnit node name =extract (initjnode~t~bleref, "node~table.name");
acceptnoae-name a exte'at (accept-node-tableref,

cal node able. name Tr):-
calwrite li st "Control message number ",contasg..numb,

Usent frm , it__node_name, "to ", acceptnode..iame):
call write list,_("r representing a message In a message",

Wgroup");
return:
end,

/* If the next section of code is executed, then the message should be sent
between processes at the same node #/

/* The nurnbr of messages queued equals the number of messages sent because
there is no delay across any node 0/

call alter (mgref "msaenme q" sencLmsg.numb),
call write::list_(AA message has been sent in message gr'oup ", p-gname)-
/0 If no processi has accepted the message group, return rather than see if

a process should be woken up #/
If ^inserted_(mgref, "rcv .proc->message")

then return7
/w If a process is waitin~g for this messaae, wake it up an6 let it "receive"

the message i /
call find,-owner hecept procref, "r-cvproo->message", mgref)-
call find.,owner (ndm_proc 'ownerref, "lnode/dto/mg-'Pprocess", accept--procref),-
it' no-rp rooown erref =mgref

Appendix 11 Procedure MSG

then do;
/#'Wake up the process pointed to by acept.procre" to
call remove_ aoceptjorocret, "node/d bc/mg-> process");-

cal inep-aoept-..roret, "piode/dbo/mg-.>prooessff, "first",acept-..node.tabjeref);
'* Receive,, the message /rev.a...nt ext raot..(gret, "~measas.nuberrovd*) + 1;

0a le*r (gref Omesage.nunber rovd", revs-numb);/I Geot the-name oi' the prons thiE was awakened*/
aocopt-node name x extract acoept-ncde..,tableref,

*"ide.t able. name'accept rooe -me. extract_. aooep...rocref, "prccess.name");
al writtejist ("Process", &coept..proq-name, "at node",

&cc*ptod..aue, "has been awakened upon");call write-list('n receipt of a message In message group",

end;
return:
end MSG:

Appendix II Procedure OPCON

OPCON: procedure;
/ This prooedure contains subroutines which create an operator connection,

allow the operator to send messages over the connetion allow the
operator to receive messages over the oaveotion and allow the
operator to report its status (active or blockedi with respeo to the
operator connection. The following us s visible fumotions are included:

CREATE OPERATOR CONNECTION
OPERATOR ME$A02OPER. ATIOR STATUS

RECEIVE OPERATOR MESAGE

del corL.opref fixed bin(17);del eon bit(l);
dol n d_proco wmerref fixed btn~l

del nodseref -fixed bin I

del node tableref fixed bin(1
dcl numer Qd fixed bin!
del obplre? fixed bin 17J;
do! op-conref fixed in 1del opref fixed bini1)
dol pohn. char (e*
dol poonjome char)del p_op_n ee char)

dol p~op..nodeAme char)
dcl pproess_name char 1
del processaham char 1
del proo.node-nie char 12
del prooref fixed n(17);
del pchstate har(17
dcl table*ef fixed bin(17)
del write_list_ entry optionstvariable):
%inclde DDMCserv routines:
%include ADT-primtive3:

i' CREATE OPERATOR CONNECTION 7/9/76 *l
copcon" entrytp-co name, p_con_nodename, popname, p4proess_nae);
/0 This procedure will create a connection between the operator specified

by " op-name" and the process specified by "porooess.amem, both
located at the node specified by "p op_node ngme". The connection will
be given the name specified by p cornme"

/0 If we have a duplicate operator connection name, print an error message
%nd return 0/

if find-entityloc(op gonref, "sys->opcon", SYS_REF, pon_name,
"opcon .name-)

then do:
call write list_("Duplicate operator connection name.",

WComland rejected");return;
end:

/4 If the node specified by "p connodename" does not exist, print an
error message and return

if findentity-lo(nodere, "svs->node", SYS_REF, p-con.node_name,
"node.name")

then do:
call write lit ("Invalid node name:", psornnode name,

Mdoes not exist"):
return:
end:

/0 "et the locatior of the node table for "pcon node name" a/
eos !: find entiLtyloc(node tableref, "node->node-table", nodere,

116

Appendix II Procedure OP _CON

p..ooLnode..name, "node table.name"):
/* If the node 18 unaware of the existence of the operator, print an

error message and return */
if find-entity..loo(opretf "node->operator", node_tableref, p...op...name,

then do:
call write list ("Invalid operator name:", p op-name,

return; wdoesnfot exist at node", p...cornob~e same):-

I' Iftheand;
/* I theptooess specified by "p.process name" does not exist at the
node~ specified by "poonnode-.name", print an error message and return 5

if find-entity-loc(procref, wnode;>prooels", node~tabieref,
thenp..rocess-jiame, -prooess name"
thndo:

call write list ("Invalid process name:", p..process name,
TWdoesnfot exist at node", pcon~node name;

return;
end;

I, If the process specified by "p...process_name" is not active, print an
error message and return 0/

call find_wer_(ndq_.roq ownerref, "node~dbo/mg->process", procref);
if entitycolass name(ndt..proc. ownerref) ="node_tale

then do
cail write list ("Invalid copcon command. Process", p~proness-name,

Iris 66i active");
return;
end:,

/* Create an entity for an operator connection and insert it into the
proper sets 0/

call creat eentityj on "sonref, "op con");
call create_attrib-%xte_ ;p conref, wop..con.namel, "field" 12 p cor~nrme);
call create-attribute %cp conret, Oopcon.number..qd", Nfleld~f'
call create_relationli'poonref, Wprocess->op-con" "Member"5.
call createrelationship-op..conref, "operator->opconA, "member" ;
call create_relationship.Aop-conref. "sys->opcon14, "member"),
call create_relationship (op..cnref, "node/dbo/mg-poes 4owners):

calisert.Aop..conref, wprocess->ciLcon " "firs" procreft.;
call insertS.opconref, "operator->o Cjod MAfrs opref);
call insert topcqonref, "sys-op.son", "fis SYSRE)
call wrieis_"Operator onnectionA p.soLname, "has been established");
return;

Appendix II Procedure OP_CON

/a OPERATOR MESSAGE 7/13/76 0/
on -entry(p~conname):,/This procedure will cause a message to be sent from an operator to a

process over the operator connect ion specified by "p..oo Lame". If a
~rocess is waiting for this message, iwllbe awaened ad given

hmesage, otherwise the message will be queued. Any OBPL' a that
were waiting for state Information about theiopeao ih e ett
this operator connection will be discarded sic the operator Is active 1

~If the operator connection specified by Op-con~.name" does not exist,
print an error message and return #/

if finid_entity...loc(opconref, "sy->op...onft, S!&..REP, p-conname,
* then op...con.name")

thndo:
call write-list-("Invalid operator connection name:*,

return: p.oon~jame, "does not exist"):

/* Discard any OBPL's that were waiting for state information from the
operator that sent the Message #/call find owner_(opref, "oeerator->o ._cop", op..conref)-

call find rirat- (oplref, oprtr >bpl",orf o
do while T son), prtro ,orf 05

call remove (obplref "operator->obpl");J,
call find~fTrstj(obpiref, "operator->obpl" opref, es);

/0 If no process is waiting for the message, queue it an return 0/
if empty_ conref, "node /dbo/mg->prooess")

then do:
numerqd 'S extract-..op conref, "op....on.number qd") + 1;call ater-(op conref, Wocnnme dnumer.qd);

call write lis ("No proces p is waiting for the message,",
ewso IT is queued")

return:
end:

/0 A process is waiting for the message so we must wake it up 0/
cadil find first procref, "node/dbo/mg-5proc ss, op...onref, eon);
call remoe ..(pr rf "node/dbo/mg>proceass");
call find owner_(tabieref, "node->prces" prooref)-
call insert_(proc6ref, "node/dbo/mg->process", "first4, tableref);
/0 Get the name of the process that was awakened #/
process namue =extractpocref, process.name");
proc..ino m etac (tableref, "node~table.name");
call -wielist.(process..pame, "at node", procojiode-name, "has been",

p-conname):-
return:

11 8

Appendix II Procedure OP_CON

I'OPERATOR STATUS 7/114/76 0/
ostat: entrytp op node name, p-op..name, pstate, pcoon-naie):
/This procedure w ll take th approp nate action when an operator
/reports that it is "active" or waiting" 0/
/It the node specified by "p -op node_name" does not exist, print an

error message and return #/"
if f..cntityoc(noderef, "sys->ncde", SYSREF, p-op-node-name,

"node name")
then do-

call write list ("Invalid node name:", p _op..nodename,
Wdoesn ot exist");

return;
end;

/Get the location of the node table for the node specified byf ~~"P...op...node name"
eos =fincLeffity loc(tableref, "node->node table", noderef,

p-opno6&ejame "node ..table .name"7;/f if the operator specif'ied by "p op namne" does not exist at the given
node, print an qrror mesale a rturn 0/

it find_entityjloc(orf deno cerator", tableref, p-op..name,

then do:
call write list_("Invalid pperator name:", p...op...name,

~does not exist")
return;
end:

/0 If the operator Is active, we can discard all OBPL's that desired this
state information and then return 0/

if ps3tatez aactiveA

call find firat (obplret, "operator->obpl", opzref, eos);
do while (ecal;

call remove (obpl ref "operator->obpl");,
call find-ffrst,_(obpiref, "operator->obpl", opref, eos):
end:

call write-it .("All OBPL's waitinig for the given state",
"information have been discarded");

return:
epd:

if Ps3tate ="waiting"
then do

cail write list ("Invalid state. An operator can only be",
Wactive or waiting");

return*,
end:

/0 If the operator connection specified by "p-con-name" does not exist,
print an error message and return because one can not wait for a
message over a nonexistent operator connection 0/

if find-entity-loc(op conref, "sys->op-son", SYS_REF, p-con-name,
mop -con .nahi")

then do:
call wite...list"Invalid operator connection namet",

p-con,-name, "does not exist"):
return:
end*

/* If the operaturtspiie by"op-nane" is not involved with the
operator connection specified by "pcon.name", print an error message
and return */

call find,ownerj(con ,opre', "operator->opcon", om..conref):
if opref con-oprel

then do*
call write list (p-op,name, "at rode", D op node_nac

~is not~ associated with operdt-or connecetion"',
pconname)

return,
end-

*c'all jite_ list-("We will now rcheck fA'ceadlock involving the Riven",

lip~

Appendix II F'rocedurse OP_CON

"operator").
call writejilst.A" and operator connection"):
/0 If the pro~cess that can send messages over the 5prator connection

secified bypco aeiscte there is no deadloc~k so
discard all OP's het requested tA. given state inf'ormation '

call find owner_..procref, "process->op .con" op...conret);
cal id~wnr~nm..ro~onrrt,"oe/d6o/mg->process", procref):

if entity-class name_ ndm~proc-ownerref) a "node..tabl0
then do:

call fidfrat (obplret, "operator->obpll, opref, .03)l;
do while ItoST.

-All remove (obp ref "op.rator->obpl")
4 call1 tindj'ItL obplret, Ooperator->obpl", opret, eos);

end;
return;

f01t end;
/Ifthere are no OBPL's waiting for state information about this

Soperat~r, create an OBPL with the operetor as the only process entry 0/
Ifemtty.,.opref, "operator->obpl")

call dolobpl(obplret p...op..nodejname, "", "opjisg");
call dol..proq..entry(o;Rlref, p_op node...name, p cpjname)-
call insertjobplret, operator->obpl", "firsti, opret3;
end:

/Find out the name ot the process that can send the message the
operator desires 0/

process name z extract (procret, "proces3.name")-
/* Expand each OBPL thati requi.red state information about the given

operator */
callhfind rir3t (obplref, "operator->obpl", opref, eos);
do while T eo)

/* Remove thq OBPL from the set belongl~ to the given operator 0/
call remove_(obplref, *operator->obplO)
/0 Check it we have a doadlook 1/ ~rcs ae
call checkjfor .deadlock obplref, P-0 yopode... , cesname, eos);
/0 It eos a 1, then a deadlock was not deteqted, so we should add a

resource to the OBPL and then expand it G/
if eos

then do:
4 ~call obpladdresource(obpire , ndm.proc,..ownerret,

/I If ean = 1 hnde~ reos): the process is waiting for
ia in the same node as the process, so we can continue
to expand the OBPL '

ir eos
en;then call expotpl(obplref, pop..node.name)i

/0 See if there are any more OEPL's to be examined 0/
call tind..irst_obplref, "operator->obplm, opref, eos);,
end;

return,,

120

I

Appendix II Procedure OP_.CON

/0 RECEIV4 OPERATOR WES8AGE 7/13/76 0/
rcvopags: entrytp con name);
/' This procedure will simulate the receiving of a message by a process

over the operator connection specified by ort.name pr
If the operator connection specified by "p orname" does not exist,
print an error message and return 0/

if findentityjloo(opocnref, "sys-)opcon", SY&.REF, poon_name,
-op-oon. name-)

then do
call write list ("Invalid operator connection name:" , p_oonname,

'does-not exist");
return;
end:

/G Get the name and node of the process that should receive the message I/
call find ovner_(prooref, "proces->op con", op conref);
process name z extract procref, "pro6ess.name"7;
call fin.owner tablere f "node->process" rocref)
ro~nodename a extract ftableref, 'node- table.namea);
/N I the proces is notactive, print an-error message and return 0/
call findLowmercdLrocLownerref, "node/dbo/m->process", procref):
If entity olasaLnae ndu.proaovnerref) a "node_ able"

then do
call wrItelist("Prooess". process..name, "at node",

pro node name, "is not active. No message can be'):
call writelist(" - received over operator connection*,

return;
end;

/0 Find out if the message can be received, or if the process must be
blocked I/

number qd x extrac'._(op_oonref, "op_con.numberqd");
if num'ber_qd > 0then do:

/5 Remove one message from the queue 5/
numberqd a numberqd - 1;
call alter op Qnref, 'op..on.number qd', number qd);
call wrte-list (proces.name, "at no-de", procnoaename,

'whas rqceived a message");
call vritclist_(' over operator connection", p%.onname);
retur,,
end;

else do:
/0 Block the process and initiate processin§ of an OBPL 0/
call remove._(procref, "node/dbo/m->orocess):
call inaert_(procref, "node/dbo/mg.,>process", "first",

op conrof);
call write_list_("Process", process name "at node"

procnodename, wi3 blocked waiting for aA);
call writelist(" messange over operator connection",

p-conname) :
call initiateobpl(procnode.qnme, processaname, procL.nodename,

p_con-name, "op_msg"):
return:
end;

end OP_CON:

121

I

Appendix II Procedure RCYCM

RCVCM: procedure:
I This procedure is a collection of subroutines which will accept

a control measage and take the appropriate action. The following user
visible function is included:

RECEIVE CONTROL MESSAGE
The followin upport routines are included:

PROCESS MESSAGE
PROCESS OBPL PASS
PROCESS "PROCESS TERMINATION"
PROCESS RESOURCE GRANT
PROCESS RESOURCE RELEASE
PROCESS RESOURCE REQUEST S/

del accept-nodename char(12);
del acept-nodestableref fixe bin(17);
dcl aocept-procname char(12);
dcl accept rooref fixed Oin(17);
dol RaCOe type char(9);
dcl cont_isgnumb fixed bin
del contpssgref fixed b n17):
del cont_ma.gtype char (20)
dcl dboiame char(12);
dcl dbo node name char(12);
del dbo.noderef fixed bin(17);
dcl dboref fixed bins 17):
dcl dbotableref fixqd bin (17)
dcl eos bit():
dcl mg-name char(12);
dal mref fixed bin (17)
dcl n dmproc ownerref fixed bin 17;
dcl obplref fixe bin (17);

dcl p cont.ms _numb char()
dcl p-Jusgref fixed bin (171;
del p'obvl_passref fixed bin 17 :
dcl pjrea_,grantref fixed bin 17):

) del p-reirelref fixed bin 17):
dcl pre_reqref fixed bin117 ;
dcl process name char(12);
dcl procjnodename char(12)

del proc--noderef fixed bin(1 7)
dcl procref fixed bin (17)
del proc-tableref fixed bin(17);
dcl qdasnumb fixed bin;
dcl rev msg_numb fixed bin;
dcl rcv_node.name char(12):
dcl h astref fixed bin(17)-
dcl writejlist entry options~variable):
%include DDt serv routines:
%include ADT-primtives:

/6 RECEIVE CONTROL MESSAGE 6/15/76 4/
receive_control message: rcvcm: entry(p-cont-msg-numb):
/0 This procedure will verify that the control message which has its number

specified by "p cont msgnumb" has been sent, but has not been received.
The procedure wll thendetermine what type of control message it is, and
the appropriate subroutine will be called to act on the message. */

call find flvst_(contmmgref, "sys->controlmessage", SYSREF, eos):
/* Convert the control message number from a character string to a numeric

value */
cont msw-nu : p_cont msK_nsnum

Appendix II Procedure ACY _CM

/* Find thg control message with number specified by "p...contmsgjaib" 4/
do wiexrc (cn ecs);, "control-jnessage .number") zcont-mag-nunb

then :th
1* Remove tecontrol message frcm the set of control messagesso that this control message will not be received a second

time 0/
0111lrmove..(oont magref, "sya-)control-pessage");

/ Fnd utwha tpe of control mesage t s and call theroutine that wil take. the appropriate action 0/
cont....s-type n entity..clia sname_ oont~jnsgref);
if cont."Aa&type x "msg"

thncall write_list ("Control message number",

f conE sg-numb, "repres-enting a message",en sae group");
call write list_ his been received*);call prooesajiagloont-Msgref
return;
end:

if oont..pg...type a "obp1,-pass"
then do*

cell write-list ("Control message number",
~con'-1magnumb, "re resenting an OBPLO,
Was been received." 1call procassobp1-pass(cont~jjsgref);

return,;
end:

it cont_*s type z "res..grant"
then do-

call write list ("Control message number",
-cont.Jns-numb, ",remreent ing a remote",resource allocation)

call write list(has been received");
call prooessa-rs...grant(cont-msgref);
return:
end;

if cont-msj-type x "resjeel"
then do;

call writelist,,("Control message number",
g-conz,_sgnumb, "representing a remote",
resource release"):

call write 1ist -(" has been received")-,
call1 process rca-rel(cont__msgref);
return;
end;

if ccat..msg tv7 e ="resreq"
then ho

call Write-l.it("Control message number",
R-cont.msg..numb, "representing a rem~ote",
resource request");

call write -list (" has been received");
call process-res Lreq(contjnsgref):
return:
end:

end-
call find-nextj.fcontmsgref, "sys-'"contrcl-message", eos);
end-,

/0 If "p cant-msg-numbl didn't match any control message number, then we
should print an error message and retrn 0/

call write.list (p -cont -msgaymb, i.% not a valid control message number.",
Command reject ed

return,

12

IiAppendix II Procedure RCV _CM

/6PROCESS MESkSAGE 7/1/76 *
process a..sgz encry(p imgref)!
/This procedure will :eceive a mesae in a message group. If a process
is wi4iting for this missage, it will be woken up. othervise the message
will be "queued" 0/

/Get the name anj location of the messagq group fi
mgname aextract (p msgre?, "msg.mg.name");

cos :findenti loojref, "sys->message", SYS-R)EP, mg..name,
"message.nane)

/0 Acknowledge receipt of tho Message by adding I to the number of messages
qdthat have been queued in this message *ru 6/

mpsgnumb zextract..(mgref, "message.nur ,qd)+;
c a aie_.(mgref "message.nt.aiber..qd", qL~sg..numb);,

/V ~ norpro s~ Ass accepted the messag? groap, return R/
if inserted_(ugref, "rcvproc->,message)

then do:
call write listj"Message group", mg..name, "h a not been",

retrn: waccepted. The message is queued."):

end;,
/0 Get the name and node of the process that can receive the message 6

call findoner_(accept.,proqref, Orcv-.proo->message", mgref);
accept roc-name z extract (accet..prcref, "proceas.name"); uge)

cal md owner.-(accept.-noetableref ffo~tnd-msaef ge)
accept noe nme zexract(acept-io~e-tableref, "node. tabe.naae");
/9 iKeep the message queued if the process is not waiting for it. Otherwise

wakeup the pr~cess. 9/
call find~owner_(ndiurconrrf "node/dbo/mg->process", accept~jprocref):

if nd ~ f reoe Rr - wngref ,

thn al wiel iitN process is waiting for the message,",
el se d oi "So it is queued") : -p o e i)

call reamove-(aacept..procref, "node/dbo/mg-poes)

acaiept.no-e ta(bi~erefV) ___
cv msg.nub r exrc(gref, 4message.number.rcvd") + 1;

call aiter_..(mgref "message.number rcvd", rcv ..msg.,.numb);
call writeL_list (AProcesss .,accepT .. roc,name - " at pode "

acce~pt node .name: "has been awakeneA upon");
call write..ist..T" receipt of a message in message group",

end, :kglm

17 return-

/# PROCESS OBPL PASS 6/24/76 6

process-..obplpass: entry (p-obpl.passref);
/* This procedure will allow a partially expanded OBPL to be "received" by a

node and then be expanded as much as possible within that node 6/

/0 Get the location of the OBPL entity that has been "passed" between nodes.
We need not check "eom" because we know the desired eatity exists. 6

call find-first (ob-'rer, "obpl- pss->obvl", p'_obp1.passref eas):
/* Get the name-of te node receivng the control message. 6,
:cv node-name =extract.-(bpLp assre', "obp1_pass.dest_node_name"):
/0 -Femove the OBPL from ths control message so that we can send the expanded

OflPL in another conttrol message if necessary 0
call removeLjobp iref, "obpVpss>obpl"):
/6 Expand the OBP'W a2 much as possible in the receiving node/

call exp-obpl(obplref, rcvnode_name):-I return,

Appendix II Procedure RCV_CM

/k PROCESS RESOIRCE GRANT 6/15/76 *
process res..grant: entry(p..res~grantref)I
/~This procedure will iake up a process and give it access to a resource as
specifTied by the remote resource grant control mes sage pointed to by
'p reu~rantref* '1

/t Gie the names of the process, resource and nodes involved ~
process name z extract (p re&..grantret, Ores..grant. pro...name");
P roc no&e name x ex4raitTprte~gj-ntref, "res~grant .proc -nodelname");do name a extract (P_'e grantref, "rs .ront res ae").
Oo-node-name 3t oxract (pres...rantref, res..gant .res-nodenme)
/0 Find the locations 67 te entities fo the process, resource &nd their node

tables within the node specified by Nproocnode name". Note that we need
not test "ecs" because we know the names pIacea in the control message
represent existing entities. I/

ecs = findentity_ oc pro..nzDderef, "sys->node", SYS..REF, proc node-name,

eos =findentt loproc tableref "node->node -table", proc..noderef,
'2poru e_n e , 'node tabie.name");

eo =fident-ity..lo (rocre f, Wnode->process"I, proctableref, process-..namne,WrocessnameW);
eos =findentity..loc(db; tableret "riode->node..table", proc~noderef,

dbo node.n~ Twno table.name);
eos =fin4,.ntity_loc d6ore , w'node->dbo", dbo~tablpref, dbo-nae,

db. .name) *
/0 Unblock the process 3
call remove_.(procret, "node/dbo/mg->procats");
call insert~(procret , " node/dbo/mg->process", "first", p roe tableref):
/0 Give the process elusive or shared access to the dbo, depending upon the

tyra fcc... that was requested. 0/
ifeten -Irorf "proces s.access_type") a "exclusive"

/I Grant the process exclusive con~trol of the database object 0/
call insert (dboref, *process->dbo", "first", procref);
call write-list (process name, "at node", proc -node name,

w~as Eein granteid exclusive use of"),,-
call write-list_(' " dbo..name, "at node", dbo_node_name);,
return:
end;els do:_
/* Grant the process shared access to the database object 3
call deldbi shasmt(sh..asmtret): t
call insertTsamtref, "dbo->dbo stuasaic", "first", dboref):
call inser stasmtref, "process-5dbq_ sh_asmt", "first", procref);,
-all writ ait. (process name, "at node", proc -node_name,

ha Ueen granted shared accesa t)
ca'll write_list_(" ",dbo-name, "at node4, dbo_node_name);
return;
end;

J

Appendix II Procedure RCY_CM

PROCESS RESOURCE RELEASE 6/15/76 0
process_rea rel: entry(..esrrf)
/0 This procedure will release a resource from cntrol by a remote process,

as specified in the resource release control message. If possible,
additional processes will be removed from the queue tor the database
ob eact and will be granted access to the database object 9/

/Get the names of the process., resource and nodes involved 0/
process name =extract (p re. ralref, *resajel.re1_ro_- am6');
proc node _nae a e4r't...pFes reiref, "regel.re1_nod_nme"):
dbo name 1i extract (pje4_relre?, '"res..rel.dest dbo name");
dbo od~e sa extract (p res..relref, wreaeldet...xoda_name");,/ Ind the location cie entities for the process, resource and their

node tables within the node specified by "dbo ode name". Note that we
do not test "eos" because we know the names plaoed-in the resource release
control message re resent existing entities. I/

eos fin entity..lon dbo..noderef, "sys->nodel", SYSREF, dbonodenaue,

tos z findentity-loc(Abo tableref "node->node table", dbo-.noderef,
dbo node.Pam. Wnode tabi,.name"); -tog fin~entity...op(diorcf, wnode->dbow, dbo_tableref, dbo~naae,

dbo.nwqe")*
eos findentity-)loot proowtablcref Nnode->node_table", dbo...nodercf,

proc node nme, "node table.name");
eos =findLentIty-..,Xne~procref, Wrnode->process", proc-..tableret,

procs~lame, *process name")-
callwrielic~. -*-oname "at node", d6o-node..name, "his been released by");

call write rics t prcs ae at node", proc ode-..name);
/0 "heck f he process haA exclxiie control of the data age object 0
if insertedj dboref, "process->dbo")

then do.
/0 Release the database object atd thentgrant at least one other

process access to the database object If any processes are
queued for it */

call remove (dboref~ "proces->dbo");)
i f Iuon Jbaboref, nd/bmg>rcs"

tten call ren-procjfrouL-queue(dboref, dbo~tableref);
return:
end:

else doz
/0 Release the database object from this shared assignment, and if

thegre Are no other processes currently having shared access to
the database object we can grant another process access to the
database object if any are queued for it I/

call find-first intersect ion..(sh..aamtref "process->dboshasmt",
procref, "dbo->dbosh aseat", dtoref eos);

call delete entity (sh asntref "1dbo skL~asmt"ll;
if member-coupt-066ore?, "dbo-3dbo Fsnm) = 0

then if empty_(dboref, "node7dbo/mr->process")
then call rem-proe-frooqueue (boref, dbo-.tableref);

return:
end-

126

Appendix~ :1 Procedure RCV_CM

/3PROCESS RESOURCE REQUEST 6/15/76 0/
process r.es req- entry(p -rsjeqref);
/9 This prcFedure will process a request for a resource from a remote

Srocess, as specified In the resource request control message. If
he resource can be assigned, it will be and a control message will
betgenerated to that effect. Otherwise the process will remaIn blocked
until the resource becomes available. #/

/0 Get the names of the process, resource and nodes involved,,*/
process name a extraot_p.re...reqref, Ores...req.rec~proc name')
pro...noae.name a extracp..re.reiref, "1res...req.req~jioae narae4);
dbo-name z extract (prereo, "res_req.dest dbo name"1;
dbo node-name a extract t esrqref, "res-reqidest nodename");
/0 'Find the locations oF 5 entite for tepoess, resource and their

respective node tables within the node specified by "dbo node name". If
the node is unaware of the existence of the process, create a local entity
for that process. e do not h'ave to test eos because we know the entities
for the node tables and the resource exist because the names were placed
in the resource request control message #/

eos =fn niyocdbo_noderef, "sys->node", SYS..REF, dbo-node_name,
noe*name"j

eo3n findentity-joc dbo tableref "node->node.table", dbo_noderef,

es/ Crfnd e te a oc al"ref Ieiy o th poctbes, sinbeonaede o
cWall namres" por).pocs...nm

eos= calle insert..proc aref "nod >np reess","firs"& pr-ntaeref);
call inep of "node/dong-pocs" f);t

if fid enti oerocaer"o~e->r): ro.tbee, rcs~ae
t end;

/0 Deeri e atte a"oaaccestisy desr te prcssi* nede o
access al tY detac...(P..es..Yeref, roeseqacess): tye

cal e atse pobject might b= availablefortr ssignment /)
if isertL~db ref procs-do)Iepy(bref, "node/dbo/mg-)process")stw

t end: pBock tabere ssi hedtbseojc hsb
/Deemnwhttpofasciges to anderre ssfrecuieueo
accse~y cex ifc othrereproess es areq crenstypqeue fr h
/0 Ceck !h d t~aae obje mih 3e/vial frasinet0

if Ins call aer3 "procef "prowss1aetypdbre, "aocess...t >Pocess"
call remie /*Bockethe "nd.om-process"); dtbs ojc hs;

call insert (procref,: "node/dbo/mgs-pes", ast", dref)
call writels ("eouc n; aviabe rocess remains blocked");
call ±.nitiateL_otpl(proc _node name, proce ssname, dboL_node-name,

dboL-name, OdboO):
return:
end-

/* Check if the request is for shared access 3
if accesstype ="shared"

then do: /*Give the process shared access to the desired
database object 3/

call dcl -dbo sh asmt(sh-asmtref);,
callinsrtstasmtref, "dbo->dbo sh asmt", "first", dboref),:

call insert- sh...asmtref, "process-5dbo sh asmt", "first", procref):
call write rTist (process name, "at node"1,procnode name,

Wis granted shared aco.ess to"):
call write _list (" ", dboname, "at node", dbo_node _name):
call dcl-rem-rj..grant(dbo _node name, dbo nam~e, proc...nodename,

process name,' cont_ms9,numb):

call write list_ (-Control message number" cont msK..numb,

Wsent tX .)m", dbo)-node ,name "toA proc_node name)-,call write-list_ (f representina this allocation"),

Appendix 11 Procedure MC'CM

return:
end!

/#Te nxt f sateentwill be executed if the request Is for
/0The:xclusive use of the database object 0

/0 heck if any process has shared also to the desired database object 0
if empty (dboref, "b-dos mt

then o:/*Queue tie pirooess for exclusive use of' the database
object because at least one other process currently
has shared access to the database object. 0/call &Iter.(rocret 'process. acest.tp' "ecIveI

call asuovq1prooref' Wnode/dbo/mg->procesa);
call insertL prooref, 'node/dbo/ug->prooess", "last', dboref);
call write ait '"Resource is not currently aviable for",

cal exclu ive use, procesO, prooesqs 1;
calwrite list nd" rond~ae

call initate..obpl(proq~nodenaae, prcoess.nase, dbo-.node..naine,
return: d~.nudo)

else do blrn tepocess xlusive use of the desired

cal wrt pocss ame "a nd", .. naue ronoejue

Qroe name, cn~s~u
callen wri'fControl message number"s cont.3sgnumb,Wrn-from', db_noen "to& proc node_name);

callwrit~lit_("repeseningthis allocation');

end:
end RCVCM:

128

111 11 1 g i 1 11

Appendix II Procedure OBPL

O8PL: procedure;
/4 This procedure Is a collection of subroutines which act on

* an OBPL and check for deadlock.
The following support routines are included:

COPY OBPL
EXPAND OBPL
OBPL ADD R~ESOUJRCE #/

del eos bit(l):
del first..procref fixed bin(17):

*dcl message.numb fixed bin-
del mgref fixed bin (17 :
del ndm...p oc...ownerref fixed bin (17):
del new obplref fixe4 b Jn(17
del obpllproq..name chart 12)?,
del obplproc~node-name char (12)
del ob p4 -onode-tableref fixed bin(17)

dc opl procref fixed bin(17)
del old..proo entryref fixed bin~ 17)
del op-Gonre? fixel bW1n171;
del operator_name char (12):
del, opref fixed bin(7)
del p-c..opyref fixed bini17);
del Pe0os bit(1);
del pjid..proo ownerref fixed bin(17j;
del p..obplref - ixe4 b 0(17)
dcl p..prooess name char 12);
dcl p...proc..nde....ame char(12);
del p-rcv node~ame charI12);
del proc..entryref fixed b MIT1);
del process name char (12);
del proc node name char (12)
del procref -fixed bin 17;
del proc tableref fixed bin 17
del rcv-noderef fixed bn1
del res-name char(12;
del res~jiode.name char? 121
dcl res node tableref fixed bin(17):
del resref -fixed bin(17);
dcl res..type char(7)-
del shasutref fixed b1n(17)
dcl write list etyotosvral)
%include DDt-serv2roitines: etyotosvral)

1 29

Appendix II Procedure OBPL

/0 CHECK FOR DEADLOCK 6/25/76 0/
chckfor deadlock: entrv~ obplref, p-pro..node name, o..grocess-name, peo).check_ ocessnaPe

I, hispiocedure wil e ec if pt es ispecified by ~p-roeys anil
and lcated in the node specified by "p..roc node..j areadyhsa
entry in the O1BPL pointed to by "p..obpref"._ If no such entry exists
then one will be created and "p eos" will be net to "l'b, indicating that
there is no deadlock. If an entfry already exists for the process, we
have a deadlock an~d a message will be printed giving the processes
Involved and "p-eos" will be set to "0" b indicating a deadlrock has been
detected. */

1' Get the locati~on of the first proo...entry in the OBPL 0
call find_first_(proc entryref "obpl-)proc entry" g-goblref p- eos):
/0 For each proc..entry in t.he 6BPLI check IT it mates the giventgrecess.

Note that if we detect a dead lock, we will return from inside te loop
and p..eoa will be 0. If no deadlock is detected we will exit the loop
before returnir~g and p...eos will be 1, as desired. #/

do while (peos):
/* if we have a match with "p-proess..name" and a proc..entry, we must

then check if the node name attrib6ute matches "p..proq.nodejiame" 0/
if p..procesa~jame =extract..(proc_ent ryref, Rprocentr proes.name")

'then if p...roc-.node name z extra ct_(proc_entryref
Sprocentry .node_name"

then do;
/6 A deadlock has been de acted, list all the processes

Involved and return. I/
call write list ("A deadlock has been detected.

WThe Tolowing processes are involvei:4);

proc~ode name =extract ?proc-entryref,

call 'ta t~~oenaiO process-name,
Tat node ", proc.node_name

cal fndpror) _(procentryref, "obp ..>proc-entry
3,

end-
call write-list...A End of deadlock list"):
return:
end-,

1' Get the next proc entry in the OBPL 0/
call find~nextj(procentryref, "obpl->proc entry", p...eos)!
end-

/* No deadlock ha~s been detected, so cre*ate a new proc-entry and have it
inserted Into the OBPL 'I

call dclprocentry(pobplref, p-proc-node_ name, p-processname)-
return:

i i

Appendix II Protedure OBPL

/# COPY OBL6/57
c pl: entrytp copyref, poprf:62/6'ITisprocedure ill copy the 0BPL pointed to by "p...obplref" and return
a pointer to the copy via "npcopyref". The order of the OBPL entries,
and their attribute values in the copy will be identical to those in
the ok'iginal. */ i

/0 Get the attribute values (resource information) from the OBPL entity
pointed to by "p obplref". 4/

res name =extract Tp...ob lret, "obpl.res name*):
rem--node name 2 eErat Ipoprf op~rsnd ae)
0e type : extraot-ti6P oiirf, Wobpl.res-typeW)
I reate an QBP. ent ty with the above attribute values *

call dcl~ob l(p copy ref, ra node-name, res-name res.type):
message.~n. z extract p obplref, "obplmsg.num6 91).

calale-p.-.copyref, of lms..numb" message..numO);
/* Get the last entry In the 0BPI pinjed to by _" pobpl ref_
call find last (old, roe entryref, "obpl->proc.entry", p-osbplref, eos):
/: ComeMhOOPL entry ~

re Got the attribute values of the procencry pointed to by
"old- roo-.entryref" 6/

process namte = extract joldLproc_entryref, "proc .entry ~proces3 name"):
proc... .naejae z extracatold ro...enTryret "proc .entry.node nae"):
/I Create a new proo..entry with the above aitribuite values anam

insert it into the new acpy of the OBPL. */
ctll do Lpro...entry(p...opyref, proc node name process_name);
/' See if -there are any more pro(Le~atries to 6 e copied */
call tindpio.-.(oldUroc.entryref, soa);rc nryGuj
and-

return:

Appendix II Procedure OBPL

/a EXPAND OBPL 6/24/76 */
exp obpl: entry(p obplref, Dprcv node name):
/5 This procedure will expand the-OBPL-pointed to by "p-obplref". It will

be expanded as ouch as poxxible using the information available to the
node specified by "p rev node name" 0/

/0 Get the fully quali.ed name Tresource name plus the name of the node
in which it resides) of the reseurce which is controlled by or being
waited for by the last process to be added to the OBPL. (Note that we
add processes to the OBPL by inserting them at the beginning of the set

rename = extract_(p obplref, "obpl.resjname");
res node name a ex ract_(p obplre?, "obpl.reanode name");
/* Uet thie type of the resource ("message" or "dbow or "oppsg") a/
res type = extract_(p obplref, "obpl.restype");
if res type z "message"

t~jen do-
/* The resource type is a message, therefore we know the process

that can send the desired message is in the node that isextanding the OSPL, We will act accordingly./e Get the location of the entity for the message group from which

a message is desired. We need not test "eos" because we know
the entity exists. I/

3os = find entity-loo(mref, "sys->message", SYSREF, resname,
-message name):

/a Get the number (within the message group) of the message
that is desired. 5/

message numb z extract (p obplref, "obpl.ms _numb"):
I/ If this number is less than or equal to the number of messages

lent in this message group then there is no deadlock. 5/

if (message_numb > extract_(mgref, "message.numbersent"))
then return:

/* Find the process that can send the desired message 5/

call find owner (procref, "send _Troc->m ssae", mgret)!
/0 Find out if the process is ac ive. kIf t s active there

is no deadlock.) */
call findowner_(ndnLnrocownerref, "node/dbo/mg->process",

procref):
if entity_class_name_(ndnLproc_ownerref) = "node_table"

then return:
/* Get the process name and check for deadlock 5/
process name = extract (procref, "process.name");
call checkfor deadlock(pobplref, res_node_name, process-name,

eos)T
/0 IC eos = 0 then a deadlock has been detected and we are done 0/
if (eos)

then return:
/* Add the resource that the process is waiting for to the OBPL 0;
call obpladdresource(p obplref, ndm_proeownerref,

prcv node name, eos):
/0 If eos -I t7hen the resource the process is waiting for is in

the same node as the process, so we can continue to expand
the OBPL. 0/

itf eos
then call expobpl(pobplref, p. roynodename):

return:
end-

if res type = "op_msg"
then do-

/ The resource type in an operator message, therefore we know
the last process to be added to the OBPL is waiting for a
message from an operator at the same node. We will act
accordingIy. *./

/* Get the 1ocat'on of the entity for the onerator connection
over whIch a message is desired */

eon = find entity -lc(on-oonref. 11Evs->op_con", SY_REF,
res name, "lop con.nan*"):

/* 3et the locatioi and name of the operator wno oan send the
desired messave 5/

Appendix II Procedure OBPL

call find...owner(o ref' *operator->op c..on", opoconref);
operator name t extract~opref, foperator.nameTr):
/' Check if the operator is already in the OBPL list
tall cheok.for..deadlock(p_obplref, res_nodename,

operator..name, eos);
/* IC eos =0 then a deadlock has been detected and we are done
if (eos)

then return:
/0 Queue the OBPL and request status information from the

operator 0/
call insert (p obfiref, "operator->obpl", "first", opref);
call writew lrit(An OBPL has been queued waiting for a statusp,

~rport from operator", operator..name)
call write list (" at node", res node name,

retun: wThe ivolved operator conneation is9", res~name):

end:
/* If the next section is executed, a database o~etis controlled by or

is being waited for by the last procesr to bebadded to the OBPL /I
I' Get the n&me qnd location of the last process to be added to the OBPL
call find.-first_(obpl-procref "obpl->procentry", p..obplref, ecc):
obpl.pro...name = extract (obp prooref, "proc entry.process name"):
obplproc..node name =extract_(bp1_procref, 'wproc entry~no~de name")-
/ 'Get the' entity locations for the database object and its node t:,bie, and

the process and its node table within the node specified by
"p-rev node name". We need not test "eos" in most cases becausi we
know the entities qxist 0/

eos zfind.w entitybloo rv-noderef, "sys->node", SYS.JIEF, n-rcv _node_name,
node~nme ;c

eos =findentity..lool(obgl proc node-tableref, "node->node_table",
-~~ roy noderef o p11.proj~ode..name "Ino de table.name"):

eos z in&.entity...oct rcanode..tablaef, "node->niode_table", rcv-noderef,
res node nae 0 ode..Aable.n_-)

eos =find-entity- o o nl.,prooref, "node->process", Opl.procnode-tableret,
obplpro...name, prooess.name");

/6 We must test "eos" to see if the node containing the resource is aware
of the existence of the most recently insertad process in the OBPL. If
it is not, we have no deadlock at thi time, so we can return Oi

if eos
then return:

cos =find_entityjloc(resref, "node->dbo", rca~node_tableref,
res name, "dbo.name");

o," Check if the resource is in the node that is expanding the OBPL 0/
if res node name =prcvtnode_name

thSen do-,
1' Verify that the process specified by "obp]-proc name" is still

waiting for tne resource speoified bWy "rca namew 0/
call find-owner (ndumrocownerref, "ncde/dbo7mg->process",

obpl1j5rocreff£)
if resref ^=nda~proc_owner'ef

then return-
/We must now add an entry to tho OBPL for the process
that controls the resource specified by "rcs-name",
provided that the process is not already in ie
OBPL. If there are n processes that have shared
access to the database object, then we must create
n copies of the OBPL and usp a different copy
for each reader */

if inserted_(resref, "pro'.ess->dbo")
joe o
/0 The databasa object is held for exclusive

use. Find the contrc'ling process and
check for deadlock. 0/

call find-owner (prooref, "nro-'ess->dho".
resre?):

pro'essi..name 7exctract..Aprocr"ef, "process.naze"),
epll find-owner (proc-Tableref, 'node->process.

Appendix II Procedure OBPL

procrer):
proc_ node-name a extraot_(gootablereft

"node rable.namo)):
ccall f ondoer (ndn ro ownerref,

cl "node dbo/.g->proeass", procref):
/0 If the process is active and it is at theSsame node as the resource, then we have

no deadlock. 0/
it entity class name (ndm-procownerref)

= -:"node tab5le" I procnode_name
z res-rnode-name

call then return; ncall check-for-deadlock(p_obplref,
. pro_node_name, rcess name, eos) ;

/0 If eos x O, than a deadloak has been
if d tected and we are done */
if (eos)

then return;
if proc nodename = res_node_name

then iThe process is in the same node as

the database object so we can
continue to expand the OBPL 0/

/0 Add to the OBPL the resource that the process
is waiting for 0/

call obpladdreource(p_obplref,
ndqpro oownerref,
p roy node nam., eo);

/0 If eos *- Then the resource that was added
to the OBPL is in the same node as the
process that is waiting for it, so we can
further expand the OBPL #/

if eos
then call expobpl(pobplref,

p_rcv_node_name):
return:
end,

else do:
/0 Send the OBPL to the no-le specified

by "procnodename" P/
call dc lobplcontjsg(p obplref,

proc ,nodename, prcv-node name);
return*
end-

end;
/0 If the following code is executed, the database object

has r readers. We need to make n-1 additional copies
of the OBPL. Each time we make a copy of the OBPL,
we expand that copy as much as possible for the given
node and the process that we are associating with
this copy £/

/* Find a process that has shared access 'o the
database oblect 0/

call findfirs (stu_asmtref, "dbo->dboshasmt",
rear r sose):

call find-owner fir t_procref, "process->dbo sh_asmt",
sh asmtref):

/ We will cFeck for deadlock involving the OBPL Rnd the
process pointed to by "first rocref" ater w i-hock
for deadlock with atl the other readerr of t,.e
database object. We will tenerefore iise the >'iginal"
OPPL (rather than a copy) for this check #/

call find _ext (sh asmtr.f, "dbo->dbo._ rasmt", eos):
do while T eo&Y"

,' Find the process tnat has the shdrel access
represented by the dbc sh asmt entity pointed
to by "sn asrrtrefl l /

Appendix II Procedure OBPL

call find -owner_(procref, "process->dbo sh_asmt",
sh-asmtref)

process name = extrac&..(procref, "process.name"):
/0 Get The name of the node in whion the process

resides 0/
call find...owner_(Vroe_tableref, "node->process",

proc_node_name = * rat(groq_tableref,

diferet fom he odeinwhich the resource
resdes thn w mut ceckfor deadlock. 6callfin ower (dq~rocownerref,-"noe~db/ .>Process", procref):

if enity-9ndm ownerref)
0,41._nae 1aae

then do:
I' Copy the OBPL and check for deadlock 3
call copy ob5pl(new obplref, p obplref);,
call chebd(for deallock (ne....'p lref,

proc- node-name, process, name eos):
/0 If eos u 1 Then we must either continueI to expand the list or send it to

another node *
if eos

then if proc_node_name a res_node_name
then do;

/0 Add to the OBPL the resource that
the process is waiting forV

call obpl_.add~resource(
new..obplref,
ndiuproc- ownerref,
ppcy..noe name, Pos):

/0 If eos r-1 then The resource that
was added io the OBPL is in the
same node as the process that Is
waiting for it so we can further
expand the OBPL 0/

then call exp-obpl(
newobplref,
pj'cv _nodek_name):,

e nd:-
else call 401_obp1-contisg(

new_obplref,
procjiode name,
p~ryc_node_name):,

end*
/f See if there are any more readers of the database

obj ect specified by "res_name" 0/call find-next-sh-..,.asmtref, "dbo->dbo-sh_asmt", eos):,

call Fdhe pocsnm and the node in which~ it resides
fortheproesspointed to by "firstprocref" 0/

procss~nme extact(first procref, "procesn.nane"):
call fionrtproce) Talr T, node-.>process',

proc node name = extract--(proc..tableref, "node table.namel):
/* IT h-rcs sa the same node as the regotirce and

it isatvw ednot check for deadlock. i/

call find-owner(ndm proc owrnerref, "node/dbo/wp->oroceis11,

if etityclas name _ndrt~proojowrerref) = "node-table"
& [re--odename =res-riode_- name

/* Check for deadiock ind the i expand the OPPL, ,r send

Appendix II PceueO

I :it to another node 0/
call checkfordeadlock(p obplref, proc ode--name,

process rhame, eos)
if eos

then if proc_node _name sc_node_name
then do,

call obp1-add-resource(p..obplref,
nd~roo-ownerref, p...rev node_name,

it cos;
then call exr-sobpl(p..obpl ref,

p..rov..nodename);
end,

else cali dc1_obp1contjag(p.obplref,

return: proc node_name, p...rov.nodejiame):.

/0 The next section of code will be executed if the resource is local-ed
in a node different from the one that is expanding the list */

/0 First check if the process is active. If it is active we are Oone
call find-owner_-nda~roq_owrnerref, "node/dbo/mit->process4 Obplprocret):
it entity...class_name_(ndu~jprocownerref) z "node_table"

then return*
/I Verify that the process speciftied by "obplproc_name" still controls

the resource specified by "res-nameO */
/I See it the process had either exclusive or shared access to

the database ob ject specified by "rca_name". If it has neither,
we can return. */

if (empty-iterseotion (obDprocref, "process->dbo", rca nodeR_tableref,
"node->dbo")T & (empti-intersectionL(Op Iprocretf

procss-dbc s~st ,resret, "dbo->dbo_sI~asMt4))
then returns

/0 Add to the OB4L the resource that the process is waiting for 0/
call obpl-add..resource(p-obplret, ndrLproc ownerref p rev node name, eos).
/0 If cos = 1, then the resource that was aidded to£eO~ sIn the same

naode as the process that is waiting for it, so we can further expand
the OBPL 0

i feos
then call exp..obpl(pobplref, prcv_node_name):,

return-

Appendix II Procedure OBPL

/0 OBPL ADD RESOURCE 6/214/76 5
obpladd.reoource: eritry(p..obplref, p...ndLproc-ovnerref, p...rcv node_name,

/* This procedure will be passed a pointer to a riisource that the most
recently inserted process in an OBPL is waitin$.: for. The procedure will
determine the type of resource that "p.-.ndupro~ownerref" points to and
will insert information about this resource int~o the OBPL entity pointed
to by "p...bplref". If the resource is in the rode specified by
W p..rcvnode..name", then p_eos will be set to 1 otherwise it will be set
to 0 and the OBPL will be sent to the node thai contains the resource *

if entity..clas_name-.Ap..ndLproc-ownerref) ="dbo"
then do;

/0 Get the database object name and get the name of the node in
which it resides 0/

reyame =extra t_(p-hdu-pruc ownerref, "dbo.name");calla find-owner(resiode..tableref, "node->dbo",
pjzdnaproc ownerref);

reasjiode-name =extri-ct (res node tableref o"node-table.name");
call alter_(.pobplref, Tobpl .resType", "diow);
end;

if entity.,class nauet(p..,.dm...proownerref) z "message"
then do;

/0 Get the message group name and the name of the node from
which a message should be coming 5

res name aextraqt-(pnd ro ownerref "message.name");
call Findowner...res node_tableref, "ini'~node- message",

p-ndnjroc ownerref);
r-s node name = PYMriMt_(res node tableraf, "node table.name");
/5 Uet t~e number -of the mesiage Twithin the message group) that

is desired and insert this into the 013PL 5/

message numb =extract(pnd-.proc ownerrif, "messagp .number...qd")+1;
call aler... p-obpl ref, " obpl.msgjimb", taessage nUMb),
call alter_(p obplref, "obpl.res...type", "messagi");
end;

if entity .lass namejpnd-pro-ownerref) ="opcqon"
then -do;

/I Get the name of the operator connecticon over which a message
from an operator is desired #/

res game = extract,_.(p-..nd-proc ownerref, "op-con name")*
/0 The resource (operator connection) is located entirely in

one node, so the resource node name is the same as that of
the node processing the OIPL 57

res node name =p rcv_node name;
call altier(p.obpTref, "obpl res _type", "op-psg");
end;

/0 Put the resource name and its node name into the OBPL 5
call alter_p..obplref, "obpl.res name", resjiame);
call alter (pobplref, "obpl .res node name", res node name).
/* Check ii the node can continue to expand the UBPL o6r if it must send the

OBPL to another node 4/
if' res_node_name p rev node_name

then DCos 2 lwb:-
else do:

p eos M
cill dcl_obplcontmsg(p..obplref, res -node_name, prcv-node__yame),

return,
end OBPL,

Appendix II Procedure REL

%*L: procedure:
/0 This procedure contains aubroutines which allow processes

to release resources and then assigns the roleased resource to a new
process if possible. The following user visible function is included:

RELEASE DATABASE OBJECT
The following support routine is included:

REMOVE PROCESS FROM QUEUE 0/

dcl contmsg.numb fixed bin;
dcl dbo_name char(12)
dcl dbo node name char(12);
del dboref - fixed bin(17):
dcl dbo_tableref fixqd bin 17);
del eos bit(1);
dcl ndikprooownerref fixed bin
del ownerret fixed bin1);
del p dboname char(a)dcl pdbo-nodename char t)
del p_...dboref fixed bin1
del pdbo tableref fixed bin(1T);
dcl pnodeiref fixed bin(17):
del pprocess name char?$);
dol pjproc-nole_name char(0):
dcl prooessjname char 12;
dcl procnode_name char (12);
del proorer Fixed bin (17)
dcl ptableref fixed bin(17)
dcl res..rel..ref fixel bin 17)
dcl seenodename char(12);
dcl shasmtref fixed bin(17);
dcl tableref fixed bin(17);
del tempjname char(1 2)
dcl write list entry opions(variable);
%include DD serv routines;
%include ADtfprimrtives:

138

Appendix Il Procedure REL

/a RELEASE DATABASE OBJECT 6/2/76 #/
releasedbo: rldbo: entry(pproonodename, pprocessname, pAdbonode-name,

p dboname) :
/I This grocedure will cause he process specified by "p~process name" (at

node pDproc node name") to release its control over the database object
specified by-"p d'o name" and located at the node specified by
"p dbo_nodename" 07
Verify that the node specified by "p.proc node name" exists '/

if find_entity loc(pnoderef, "sys->node ", SY REF, pproc node name,
"node.name"):

then do
cail write list ("Invalid process node name. ", p_proc node_name,

rdoes-not exist");return;
end:

/0 Verify thaL the process specified by "p_processname" exists at the node
specified by "pproo nodename" 6/

eos fincentityjoc(p ableref, "nooe->node table", pnoderef,
pproc .nde name, "node table.name't)

if find entity 1o(procref, "node&->process", ptableref, pprocess name,
"prooess.name")

then do;
call write list ("Invalid process name." pprocess name, "at node",

p proZ rodename, "does not exist");
return:
end,

/ Verify thai the node specified by "p dbonode name" exists /
if find-entity-lo(dbotableref, "node-Ynode table", pnoderef,

p_dbo_node nae, "nodetable.name"T
then do-

call write list ("Invalid database object node name.
p._dbo-node-name, "does not exist.");

return;
end*

/0 Verify tha the database object specified by "p dboname" exists at the
node specified by "p dbo_node name" and that the process specified by
"pprocess name" has access to it. 0/

/' Verify that the node containing the process is aware of the existence of
the database b ject 0/

if findentityloc(dboref, "node->dbor, dbotableref, p-dbo-name, "dbo.name")
then do:

call write list ("Invalid release. Process", p process name,
"at node", pproc node name, "does not have");

cll writelistj " access to", p dbo name, "at node",

p_dbojnodename),;return:
end-

/V ?erify that the process has access to the database object 0/
if findentity-loc(dbore, "progess->dbo", procref _dbo name "dbo.name")

& empty intersection_(procref, process-5dbo_sh-asmt", dboref,
"dbo->do_sh_asmt")

then do"
1ei ..w. 4 4 14a --- -- ----~1 d ~

"at node", pproc_.node_name. "does not have"):
call write lIst (" access to", p dbo name, "at node",

p_dboEnode-name) :
return:
end;

/V Verify that the process is active '/
call findowner_(ndm proc ownerref, 4node/dbo/mg->pro ess", procref);
if entity-class nawe-(ndnLproc_ownerref) ^= "node_table"

then do:
call write list ("Invalid release. Process ", process name,

wat nude", pproc_nodename, "is not active"):
return:
end:

/* Check if the database object I:- at. a node dit'ferent Iron, the cne that

Appendix II Procedure REL

contains the proaps/
if n ...roo .node .name =p...dbo_node_name

/Release the resource and send a resource releas3e control message
to the node which contains the database object */

/0 Check if there are no more "local" processes queued for the
specified remote database object 0/

if empty-jdboref. "node/dbo/mg-;process")
Ten do;

/* If the process had exclusive control of the datahase
object or if no other local process had shared access
to the databa seuobject,' then we can delete all local
information about the remote database object
otherwise just "release" the shared access of' the
pf recess to the database object 0/iinserted-(dboref, "pro ess->dbo")

1member count (doref, "dbo->dbo s st") < 2
then call delete_entty_.(dboref, "dbo";
else do;

/0 Find the entity for the involved dbct..sltasmt
and delete it '/
callfindfirsintersection_(sh-asmtreft

"process->dbo sh-sit , procrl
ndb->db".h..asmt", dboref, eosi;

call delete_entity_(sh..amtref, "dboshautW);
end;

end;
else do:

/I Release the database object from accesstby the process,
but retain other loca i nformation about the remote
database object 0/ Poes>b"if inserted-jdboref, poes>b"

then call remove_(dboref, "process->dbo");
else do;

call find!_first_intersection_(s...asmtref
boes-doSsat, procrefdb->dbo sh ism', dboref, eosi;

call delete...entity_(sh asmtrpf, "dbo_sh_asmt"):
end*, end,

/5 Create an entity for a remote resource release and the declare it
as a control message */

call create_entity (res-rel ref, "res rel")-
call create attribiit~e..3es rel_ref, "res rei.relpnodeLjiamer,

"'Field 1', - proc -node name);-
call create attribute_(res-rel-re?, "res-rel.relproc namell,

" ield" 12. pjprocessname);-
call create Iattri~ute"(res rel-ret', "rca rel.dest__node-name",

"field" 12-, p_d'So node name);
call create attri~ute_(rea rel re?, "rca rel.dest_dbo_name",

"hield", 12, p d'Fo-nrime);-
call dcl control messageTresiirelref, "rca rel" cent__nsg..numb);

call nsert(res.el ref "sys->control mesae4, "last", SYS..REF):call wite itT"C6tro1 message number", contjusg numb,
"sent irrom,", p~jproc nocle name, "to",, pdboq_,oa~ nae);

call write _list,_(" representing a remote resource release");,
rsturn:
end-

/* The next section will be executed If the process and datab~ase object are
loca~ted in the same node 0/

/6 Check if the process had exclusive control of the database object 6
if inserted_(dboref, "process->dbo")

then do:
/* Release the datihase ob,lect and then grant at least one other

process access to the dat, banqe object if any processes are
queued for it, */

Cal?1 remove--oboref, "process->dbo"l):

1 4C

Appendix II Procedure REL

call write-lit..("Process", n process-name "at node",
proc node name, "has released Aatabase"f);

call write-listT" - object", pdbo-name, "at node",
~pdbo....node name);

if Aem gty-fboref, "noce/dbo/mg->process")
then call reuiprocjfrouiqueue(dboref, dbo..tableref);

return:
end;

else do;
/0 Release the database object from tais shared assignment, and if

there are no other processes currently having shared access to
the database object we cant grant another process access to the
database object if any are queued for it w

call find -first-interseotionj(sh-asmtref 10process->dbo-sk-ASWt,
procref, "dbo->dbo-ah.sLaamt", doref eos)

call delete entity C sh-asmtref, odbo.shtasmt")-
call write-list_("'rooess", p rcesr-j-ame "at node",

p roc name, Was released Aatabase");call write_ at_ object", p.-.dboname, "at node",
p...dbo node-name);

if member-jcout..(dboref, "dbo->dbo st_,ssmt") =0
then if empty ,(dboref, "node~dbo/mg->proces")

reur:then as! remproc froou..queue(dboref, dbo-tableref);

end:

REMOVE PROCESS FROM QUEUE 6/3/76 6
re~rcfoqee entry(p jiboref p_dbo_tableret);
/#6 Tis rocedure will grant ait least£ one process access to the database

objec that is referenced by "pjeboref" (and is located in the node that
has its own node_table referenced by "pcabo tableret"). If the first
procesa on the queue wants exclusive use of the database object , then
only this pecooess will be granted access to the dbo, otherwise all
processes that requested shared access and that are in front (in the
queue) of all processes that requested exclusive use w~ill be given
shared access to the database object */

/0 Find the first process uee or the dataibase object ~es
/9 Check If the-process wants exclusive use of the -database object 6
if extract "(prock-ef, "proces3.access-type") ="exclusive"

then ao:
/0 Unblock the process *
call find_o~er (orert node->procs", 11 oc01)
call remove (procref, "node/dbi/ag->process"),
call insert_(procref, "node/dbo/mg->process , "first", ownerref):-

/6 iv te rocess exclusive control of the resource I/call insev'tp dboref, "proceis->dbo", "first", procref)
/, Get the names of the process, dbo and nodes involved i
dbo_name =extract_("p.bref, "dbo.name"):-
doo-noce-name extract (p dbo -tableref, "node table.name");
processjiname extractTpr*4creT, ?tprocess.namew);
proc node-name =extract_(Ownerref, "node_table.name");
/0 Check if the process ga--ning Rccess to the database object is In

the same node as the dbo 6/
if proc...node_name =dbq_node_name

then do;
call write_list ("Process" procese name, "at node"tproc node name, Ais given exclusive use p)
c.all write lis!L(" - t dbo-naora, "at node",

-dbo-node-name):
return;
end;

else do;
/* Create a control message for a renote resourc

1J41

Appendix 11 Procedure RE!.

allocation and send it across nodes.
cal dc~reL~rs~ran~db--ndename, dbojiame,

call dc nod ae process name, cont..psg.numub);
call write list. (wontroi message numbers' contjusKjuumb,

wsent fromw, dbOnodej~ame, "toA,
proc node name);

call write lisT_(" - ranting", rocessname,
retun; "exclusive use og b__aJ

end;
end;

else do while (Ceos);
/6 The first process on the queue requested shared access 0/
/0 Unblock the process 0/
call find-owner_(cownerref, "node->process", procref);
call remoyoe(procref, w*ode/dbo/mg->prooess");
call insert~~ procref, "node/dbo/mg-)process", "first", ownerref);
/I Give the praees3 shared accep s to the database object 9/
call dcl dbo - hasmt(shuasmtref)-
call insert..sh asmtref, "dbo->dio shasmt", "first", p dboref);
call insert_(sh__asutref, " process-dbo ah..asmt" "firsl Tprocre)
/0 Get the names of the'process dbo anda nodes Involved 4
dbo name z extract (p -dhoref ".Abo name")
dbo_node_name z extrait (p G~o tablersf, 4nodew table.name");
process name Z: extract Tpr-cre?, trprocess.name);

pro _~ name = extra-6t ownerref, "node table nue)
the me noe asothesd bo g access to the database object is in

if proc__node_name =dbo~node_name
then do

call write _list_("Proce3s" process name, Nat node",
proc node -name, " is granted shared ccess to");

call. write l13E" dbo-name, "at node",

end,
else do;

/# Create a control message for a remote resource
allocation and send it across nodes. 0/

call dcl_remj'es grant(dbo..,node-name, dboname,
pro de-name process name, contasg..numb);

call write lisL("Control message number" contnsg..nub,
ITsent from", dbojiode name, "to
proc node name);

call write list..A - ranting", process.name,
end Wshared access to", dbocjiame);

/* Find what Lnow the first process queued for the database
object 0/

call find first (procref, "node/dbo/mg->process", p...dboref, r)
/* If thu- process wants exclusive control of the databasa object it

must remain blocked and we will not remove any more processes
from the queue ".1

if extract..(procret "process.access _type") "exclusive"
theneo

end;
return:
end RELf

Appendix II DDM_serv _routines

I' DMH..ervroutinesinlipll
The following declarations are of the DDM service routines
del check_for _deadlock entry(tixed binOi7) char(12),

char(12) , bit(N)
/0 Located within Procedure OBPL /I

del doldbo entry(fixed bin(17), char(12));
/0 Located within Procedure DDM 0/

del deldbojb~aint entry(fi.xed bin(17));
/0 Located within Procedure DDM */

del dol.-ontrol-iessage entry(fixed bin(17) char(20),
tixed bin)5:'

/0 Located within Procedure DDM 0/
del doXLnode-tab ,e entry(fixed bin(17), char(12));

/I Located within Procedu~re DDM */
del Jclobpl entry(fixed bin(1), char(12),

char(12) char(7);
/0 Located within Procedure DDM 0/

del dclobpl...ontjosg entry(fixed bin(1 , har(12),

/0 Located within Procedujre (0
del doL..proq..entry antry(fixed binl) char(12),

dcl _ Lcated ithin(
/fLocated within Procedure DDM 0/

del deulresa t entryfie car(1), char(12),
/Located within Procedure DDM 0/

del dc~pr~entityloc1) caMchr12)

/Located within Procedure DD 6

del cl,_em~e3_gantentry~ char(12)' char(:), char(12),

entr ixedart*1), fied bin)
/0 Located within Procedure OBPL0

del rinroctitfroqeu entry(fixed bin(17), ie btr(2))

/* Located within Procedujre HEL 0/

del rldbieo bp entry(char(1) chr ' char(1),

/* Located within Pro~cedure OBEL 9/

104

Appendix II ADT...primi tives

/975-12-29 ADT...primitives.incl.pll
These are ADT primitives designed to assist tl)e fuinet Ion definitio rtr0
del add- entry(char(12), oharl 12M5)) er9

dcl returna(char(128) var ig)

del append_ entry~fixed bin(17), char(20),
0c brea) : ed tbin(17));

del create'attribute.. entryfid in 17) char(4'I),
charIM 10,ixeA bin(17),

del create-catalog..object.- entry~ fixed bin(171: nhar('));
del create-entity-. entry~ fixed bins 17) char20

4del create..group.. entry~ fixed bin~ 17), char(44
dcl create-order_ entry (fixed bin(17) ,char 20),

_ ~~gha170), hr2)
del create-relationship.. entry fix~ bi(7,chr2

char 9))-
del deleted-. entry fixed bins 17)) returns bit.(1);
del delete-.entity- entry fire? bi~ 87) ha
del divideL_ entry char If), ?harp!;32t)

return 12 varig)
del empty-. entry(fi2Ced bin() char(0))

returns (bit(1)$;
del empty..intersetion_. entry(fixed binOi7) char(20),

fixed bin(17 char(20)
roturns(bit (13)

del entity.clas.name_ entry(fixed t in(l1)
returns (char (0));

del entity__order..name_ entry(fixed bin(1l 7) har(20))
returns(bit (1;c

del exception_ entry
del extract_ entry~fixed bin(1), charPI44))

returns (char 128) varying),
del find_asociatively_. enitry(fixed bin(1) Uhr2)

fixed bin(17 char(128) varying,

del findcatlog.object,. entry fixed bin(1) char(O)
del find-direct_ entry fixed bin 17) cher(')
del find-each_ entry (fixed bin 17) bit()
dcl find-first_- entry (ixed bi 17) charjJ)

findfixed bin(17 bit(1
del fn_first_interectiit.. entry fixed bin(TS cbar(26),

fixed bin(17 , ha(0)
ft ed bin(17$ b(11)*

del find_first_unjon_ entry~fixed bin(1 5 char 26)
fixed bin(17) char(20),
fixed bin(17 :bit(1)dcl find-last_- entry fixed bi (173 ch~r(6)
fixed bin (17) bit ())

del find-next_- entry(fixed bin(173, char(20),
_ _bit~l)

u .L f .L1%kU_L..UAJx "_.L &-I.~ Warsa t _ oIAr.* .1 .A~U U.LIA% I I I .RL.U
char(20) bitfl));

del find-next-union_ entry(fixed bin(i 7), char(20),
fixed bin (17) char(20),
fixed bin (17 bit(1)

del find_owner_ entry(fixed bin(17 char(2~)
fixed bin(1 7)

dcl find_Drior_ entry(fixed bin(!?l char(20),
bit(1));

dcl insert entry(fixed bln(17), char(20),
char(6), fixed bln(17)):

dcl inserted- entry(fixed bin(171 char(20))
returnsfkbit(1)

Appendix II ADT.Primitives

del last_ofset_ entry(fixed Min(17) char(20))returns bit~l)
del member- entry(fixed tin(1 ?).char(20))

returns(bit(I);del member_oount_ entry(fixed bin(17) char(o))
returns(fixed tin(17))del name-catalog_objeat., entry(fixed in~?)-

returns(har (') vahidel multiply_ entry(char(18), ?%J128)
returns char(128) varying;

del owner- entry(fixed bin(17) char(0))
returns(bit(1 .;del remove entry(fixed bin(17), char(20));del sorterlationship_ entry(fixed bin(17), char(20),
char(20)

del subtract_ entry(ohar(129), char(128)). ,
returns(char(128) varying);

/* The following are global reference variables u ed by modellers /
del chngemode fixed bin(17) external static;
del SF PF fixed bin(17 external static int 0)dol CN REF fixed bin 17 external static initO
dol PR REF fixed bin 17' external static init ')dcl PSP -REF fixed bin 17 external static int 0)dcl PSSGREF fixed bin 17 external static init 0)dcl retu-rncode fixed binary external static init(0)del SYS_REF fixed bin(1 T) external static init(0:dcl tracemode bit(,) external static init("O"b);

Appendix III

This appendix contains examples of several deadlock and "near deadlock'

situations, thus demonstrating various features of the deadlock detection al-

gorithm presented in Chapter VI. In the case where a deadlock is detected, aI final state diagram is given, whereas in the examples where no deadlock Is

detected, an important intermediate state is also shown. A key to the

diagrams appears on the next page. Diagrams appear on a page with a header

containing the name(s) of the aasociated scenario(s). Each diagrem immedi-

ately follows the first scenario with which it is associated.

It should be noted that before the commands specific to each example were

executed, after the system state was reinitialized, the commands in file

"demoO" were executed.

Appendix III Key for State Diagrams of Demonstration Scenarios

Representz process "pi" as th~e intiator of message

group "mgj". and ~are always in the same

node to", this representation.

A - -- - ~Represents process "pi" as the acceptor of message

group "mgj" and "pi" is currently waiting for a ma-

sage in "mgjw. Qh a n dL need not be in the

A same node for this representation.

- ~ Represents process "pk" waiting for a message from

'V operator 'top!" over operator connection "conj".

.(~r~ ~-~ Representa operator "opi" waiting for a messagit from
process "plc" over operator connection "conj".

-IAL-~k Repr'esents process "pill as having access to database

object "dbok". The type of access i.s specified by

"acoess-type". and Ebo noed not be in the

same node.

ic~e Astype'Q Repiresents process "pi" as waiting for access to

da1,Abase object "dbok". The type of access desired

is specified by "accesstype". ~3and Fdbok need
net be in the same node,.

Represents a node with the node name specified by

ll'city". and db6o_0 drawn "%±thin" this node

represent processes and database objects located
within the node specified by "city". /Mag drawn

'within" the node represents a message group that was

city initiated by a process located inz the node specified

by "city".

Appendix III scenario demoO

scenario demo3
sysgen

System created
enode Boston

Node created: Boston
onode Phoenix

Node created: Phoenix
oproc Boston p1

Process p1 created in node Bcaton
cproc Boston p2

Process p2 created in node Boston
cproc Boston cn
Process p3created in node Boston

cdbo Boston dbol
Databasue object dbol created in node Boston

cdbo Boston dbo2
Database object dbo2 created in node Boston

cproc Phoenix p1
Process p1 created in node Phoenix

cproc Phoenix p2
Process p2 created in node Phoenix

cproc Phoenix R3
Process P3 created in node Phoenix

edbo Phoenix dbo1
Database object dbc! created in node Phoenix

cdbo Phoenix dbo2
Database object dbo2 created in node Phoenix

cnode Cambridge
Node created: Cambridge

cproc Cambridge pl
Process pl created in node Cambridge

oproc Cambridge p2
Process p2 created in node Cambridge

cproc Cambridge P3
Process P3 created in node Cambridge

cdbo Cambridge dbol
Datatase object dbol created in node Cambridge

cdbo Cambridge dbo2
Database object dbo2 created in node Cambridge

148

Appendix III scenario demo..bug

scenario demobug
note This is an example of a case where a deadlock involving two
note processes and two resources located in two nodes is detected,
note when in fact no csadlock exists. The reason a deadlock is
note detected is that an OBPL sent from Boston to Phoenix had its
note arrival delayed long enough so that pl in Phoenix could release
note dbol in Boston request access to it again, gain use of the
note database object end then request access to and get queued for

-'note dbol in Phoenix before Phoenix oxamined the OBPL. The first
note seven commands set up the state where pl in Phoenix has exclusive
note use of dbol in Boston, pl in Bcston has shared use Cf dbol in
note Phoenix, pl in Boston ia blocked waiting for shared use of dbol
note in Boston, and an OBPL has been sent to Phoenix by Boston.
rqdbo shared Boston pl Phoenix dbol

Process p at node Boston is blocked while a request is sent to
the node containing the desired resource

Control message number I sent from Boston %o Phoenix
representing a remote resource request

rcvom 1
Control message number 1 representing a remote resource request

has been received
p1 at ride Boston is granted shared access to

dbol at node Phoenix
Control message number 2 sent from Phoenix to Boston

representing this allocation
rcvcm 2

Control message number 2 representing a remote resource allocation
has been received

p1 at node Boston has been granted shared access to
dbol at node Phoenix

rqdbo exclusive Phoenix P1 Boston dbol
Process p1 at node Phoenix is blocked while a request is sent to

the node containing tUe aesired resource
Control message number 3 sent from Phoenix to Boston

representing a remote resource request
revem 3

Control message number 3 representing a remote resource request
has been received

p1 at node Phoenix is granted exclusive use of
dbo, at node Boston

Control message number 4 sent from Boston to Phoenix

revcm representing this allocation

Control message number 4 representing a remote resource allocation
has been received

p1 at node Phoenix has been granted exclusive use of
dbol at node Boston

rqdbo shared Boston pl Bo.ton dbol
Resource not available, process blocked.
Control message number 5 sent from Boston to Phoenix

representing an OBPL
note Do not let the OBPL be received at this time. Let pl in Phoenix
note release dbol in Boston. so that p1 in Boston will he awakened and
note granted shared use of dboi in Boston.
rldbo Phoenix pl Boston dbol
Control message number 6 sent from Phoenix to Boston

rcvc'w 6 representing a remote resource
release

Control message number 6 representing a remcte resource release
has been received

dbol at node Boston has been released byp a at node Phoenix
Process pl at node Boston is granted shar o 4 access to

dbol at node Boston
note Let pl in Phoenix request access to dbol in Boston fo ., e
note second tme, and let it be grantea shared use of the database
note obJect,

,9

Appendix III scenario demobug

rqdbo shared Phoenix pl Boston dbol
Process p at node Phoenix is blocked while a request is sent to

the node containing the desired resource
Control message number 7 sent from Phoenix to Boston

reve. 7 representing a remote resource request

Control messa e number 7 representing a remote resource request~has geen received

p1 at node Phoenix is granted shared access todbol at node Boston
Control message number 8 sent from Boston to Phoenix

rv 8 representing this allocationI rovom 8

Control message number 8 representing a remote resource allocation
has een received

p1 at node Phoenix has been granted shared access to
dbol at node Boston

note Let pl in Phoenix request exclusive use of dbol in Phoenix.
note The process will be blocked and an OBPL will be sent to Boston
note -qhere it will be discarded because pl in Boston is active.
rqdbo exclusive Phoenix pl Phoenix dbol

Resource is not currently available for exclusive use, process pl
at node Phoenix is blocked.

Control message number 9 sent from Phoenix to Boston
representing an OBPL

rcvcm 9
Control message number 9 representin an OBPL has been received.

note Now let Phoenix receive the OBPL that was previously sent by
note Bcston. A "false" deadlock will be detected because pl in Phoenix
note is blocked and has access to dbol in: Boston even though this is
note not the same assignment of the resource that was used when the
note OBPL was created.
rcvcm 5
Control message number 5 representi.,i an OBPL has been received.
A deadlock has been detected. The fo] iwing processes are involved:

p1 at noae Boston
p1 at node Phoenix

End of deadlock list

-2 .• l m

Appendix III scenario demo...bug

rj..
shared

pd dbo 1

Boston Phoenix

State where control message 5 representing an OBPL has just been sentfrom Boston to Phoenix. Receipt of the OBPL is delayed until after the state
drawn below has drawn been reached.

shared
Boston Poni

p ~ ~ i 1l,0

Appendix III scenario demol

scenario demol
note This is an example of a two process two resource deadlock in a
note sin le rode. No control messages and no operators are involved
note in the detection of this deadlock.
initag mgi Boston p2 Boston
Message group agi has been initiated

accetogMg1Boston p1
of"I hasbeen accepted by p1 at node Boston

rqdbo shared Boston p1 Boston d bol
Diat node Boston granted shared access to dbol at node Boston

rqdbo exclusive Boston p2 Boston dbol
Resource is not currently available for exclusive use, procesN p2
rcvsg g1at node Boston is blocked.

Process P1 at node Boston is blocked waiting for a
message in message groupe mg1A deadlock has beeni detected. Th following processes are involved,

p1 at node Boston
P2 at node Boston

End of deadlock list

P1

shared

dbol (p2
exclusive

Boston

Final State Diagram

1 52

Appendix III scenario demo2

scenario demu2
note Thimq iis an examrie of? a tw rea w en-rf ed-
note £nvol-ing two nodes. The first three commands create the state
note where both processes are active and both involved resources have
note been allocated to the proper processes.
rqdbo exclusive Phoenix pl Phoenix dbol

pl at node Phoenix is granted exclusive use of dbol at node Phoenix
tnitt mg2 Cambridge pl Phoenix
Message roup ig2 heLs been initiated

accep Phoe ioenix pi
not bWeeen tepted by e aof thire rnx

Process p at oe Cambridge i blocked while a request is sent to
he nodecontaining he desired resource

Control message number I sent from Cambridge to Phoenix
i representing a remote resource request

note We will delay te receipt by Phoenix of this resource request.rcvmsg mg2

nProcess pl a node Phoenix is blocked waiting for a~message in message group mg2

Control message number 2 sent froe Phoenix to Cambridge
roves 2 representing an OBPL

' rovom 3

Control message number 2 representing an OBPL has been received.
Control message number 3 sent from Cambridge to Phoenig

representing an OBPL
I note This OBPL contains entries for pl in Phoenix and pl in Cambridge.

note it will be discarded by Phoenix because Phoenix has no record that
note pl in Cambridge is waitng for dbol in Phoenix since control
note message still has not been received.

i Control message number 3 representing an OBPL has been received.rovem
Control message number 1 representing a remote resource request

P has been received~Resource not available, process remains blocked.

Control messa 1e number 4 sent from Phoenix to CambridgeI representing an 0BPL
note This OBPL contaifns entries for pl in Cambridge and pl in Phoenjix.

. ' note It states that pl in Phoenix is waiting for a message in message....inote group mg2. Cam'bridge will veril 0-that the desired message has
note rot been sento fnd a deadlock willbe dttectod,
roves 4Control message number 4 representing an 0BPL has been received.
Adeadlock has been detected. The following processes are involved:

pl at node Cambridge
'pl at node Phoenix

End of deadlock !! t

Appendix III scenarios demo2 de*03 demo4

j0
P

exclusive

shared
dbol -p

Phoenix Camnbridge

Final State Diagram

15B4

Appendix III scenario demo3

scenario demo3
note This is an example of a two process two resource deadlock
note involving two nodes. The first three commands create the state
note where both processes are active and both involved resources havenote been allocated to the proper processes.rqdbo exclusive Phoenix p1 Phoenix dbo

p at node Phoenix is granted exclusive use of dbol at node Phoenix
initmg mg2 Cambridge pl Phoenix

Message group mg2 has been initiated
accep tg mg2 Phoenix pl
mg2 has been accepted by p1 at node Phoenix

rqdbo shared Cambridge pl Phoenix dbol
Process pl at node Cambridge is blocked while a request is sent to

he node containing the desired resource
Control message number 1 sent from Cambridge to Phoenix

representing a remote resource request
note We will delay receipt by Phoenix of this resource request just
note long enough to block pl in Phoenix (which controls dbol in Phoenix)
note and send an OBPL to Cambridge. In this way, after receipt of the
note resource request, we will have two OBPL's outstanding, and the same
note deadlock wi 1 be detected twice.
rcvasg mg2
Process pl at node Phoenix is blocked waiting for a

message in message group mg2
Control message number 2 sent from Phoenix to Cambridge

representing an OBPL
rcvcm 1

Control message number 1 representing a remote resource request
has been received

Resource not available, process remains blocked.
Control message number 3 sent from Phoenix to Cambridge

2 representing an OBPL= - rovom 2
Control message number 2 representing an OBPL has been received.
Control message number 4 sent from Cambridge to Phoenix

representing an OBPLrcvcm 3
Control message number 3 representing an OBPL has been received.
A deadlock has been detected. The followin processes are involved:

p1 at node Cambridge
p1 at node Phoenix

rc 4 End of deadlock list

Control message number 4 representin an OBPL has been received.
A deadlock has been detected. The followin processes are involved:

p1 at node Phoenix
p1 at node Cambridge

End of deadlock list

17

Appendix III scenario demo4

scenario demo4
note This is an example of a two process two resource deadlock
note involving two nodes. The first three commands create the state
note where both rocesses are active and both involved resources have
note been allocated to the proper processes.
rqdbo exclusive Phoenix pl Phoenix dbo1
p at node Phoenix is granted exclusive use of dbol at node Phoenix

initmg mg2 Cambridge pl Phoenix
Message group mg2 has been initiated
acetn mg2 Phoenix pl

do shas been accepted by p1 at node Phoenix
rqdbo shared Cambridge pl Phoenix dbol

Process pI at node Cambridge is blocked while a request is sent to
the node containing the desired resource

Control message number I sent from Cambridge to Phoenix
representing a remote resource request

note We will allow this resource request to be immediately received
note by Phoenix. No OBPL will be generated because e1 in Phoenix is
note active, and it controls dbol in Phoenix. By de ault, control
note messages generated in the future will be received immediately
note after they are sent, and the deadlock will be detected once.
revem 1

Control message number 1 representing a remote resource request
has been received

Resource not available, process remains blocked.
rcvmsg mg2

Process pl at node Phoenix is blocked waiting for a
message in message group m;2

Control message number 2 sent from Phoenix to Cambridge

revcm 2 representing an OBPL

Control message number 2 representing an OBPL has been received.
Control message number 3 sent from Cambridge to Phoenix

representing an OBPL
rcvcm 3
Control message number 3 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p1 at node Phoenix
p1 at node Cambridge

End of deadlock list

Appendix III scenario demo5

scenario demo5
note This is an example of a state where two deadlocks exist
note involving four processes and four resources located in three
note nodes. Two deadlocks are involved because dbol in Cambridge
note has two shared users. The first 10 commands create the state
note where all the Involved processes are active and all the involved
note resources have been allocated to the proper processes.
initmg mgl Boston pl Cambridge
Message group mg1 has been initiated

acceptmg mgl Cambridge pl
mgi has been accepted by p1 at node Cambridge

rqdbo shared Cambridge pl Cambridge dbol
pl at node Cambridge granted shared access to dbol at node Cambridge

rqdbo shared Boston pl Cambridge dbol
Process p1 at node Bocton is blocked while a request is sent to

the node containing the desired resource
Control message number 1 sent from Boston to Cambridge

representing a remote resource requestrcvcm 1
Control message number I representing a remote resource request

has een received
p1 at node Boston is granted shared access to

dbol at node Cambridge
Control message number 2 sent from Cambridge to Boston

rcvcm 2 representing this allocation

Control message number 2 representing a remote resource allocation
has been received

p1 at node Boston has been granted shared access to
dbol at node Cambridge

rqdbo exclusive Cambridge p2 Phoenix dbol
Process p2 at node Cambridge is blocked while a request is sent to

the node containing the desired resource
Control message number 3 sent from Cambridge to Phoenix

rcvcm 3 representing a remote resource request

Control message number 3 representing a remote resource request
has been received

p2 at node Cambridge is granted exclusive use of
dbol at node Phoenix

Control message number 4 sent from Phoenix to Cambridge

rcvom representing this allocation

Control message number 4 representing a remote resoirce allocation
has been received

p2 at node Cambridge has been granted exclusive use of
dbol at node Phoenix

rqdbo shared Phoenix pl Phoenix dbo2
p1 at node Phoenix granted shared access to dbo2 at node Phoenix

rqdbo exclusive Boston pi Phoenix dbo2
Process p1 at node Boston is blocked while a request is sent to

the node containing the desired resource
Control message number b sent from Boston to Phoenix

representing a remote resource request
note No OBPL will be sent to another node an&no deadlock will
note be detected beca.use pl at node Phoenix is active and is the only
note process that has access to dbo2 in Phoenix.rcvcm 5

Control messa e number 5 representing a remote resource request
has been received

Resource is not currently available for exclusive use, process pl
at node Boston remains blocked

rqdoo shared Phoenix pl Phoenix dbol
Resource not available rocess blocked.
Control message number 6 sent from Phoenix to Cambridge

representing an OBPL

I
Appendix III scenario demo5

note No deadlock will be detected because p2 in Cambridge is active.
rovem 6

Control message number 6 representing an OBPL has been received.
note This next request will create a three process three resource
note deadlock. An OBPL will be created, and we will immediately pass
note it from node to node in order to detect the deadlock.
rqdbo exclusive Cambridge p2 Cambridge dbol

Resource is not currently available for exclusive use, process p2
at node Cambridge is blocked.

Control message number 7 sent from Cambridge to Boston
representing an OBPL

rcvcm 7
Control message number 7 representi an OBPL has been received.
Control message number Z sent from ~oston to Phoenix

representing an OBPL
rcvcm 8

Control message number 8 representing an OBPL has been received.
A deadlock hfa been detected. The following processes are involved:

p2 at node Cambridge
p1 at node Boston
p1 at node Phoenix

End of deadlock list
note The next command will create a four process four resource deadlock.
note Due to the fact that two processes have shared access to dbol in
note Cambridge, both this newly created deadlock, and the previously
note detected deadlock will be detected when the OBPL is created and
note passed among the nodes.
rcvmsg mg1

Process p1 at node Cambridge is blocked waiting for a
message in message group mgl

Control message number 9 sent prom Cambridge to Boston
v 9 representing an OBPL~rcvcm 9
Control message number 9 representing an OBPL has been received.
Control message number 10 sent from Boston to Phoenix

representing an OBPL
rovcm 10

Control message number 10 representing an OBPL has been received.
Control message number 11 sent from Phoenix to Cambridge

representing an OBPL
rovcm 11
Control message number 11 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p1 at node Cambridge
p1 at node Boston
p1 at node Phoenix
p2 at node Cambridge

End of deadlock list
A deadlock has been detected. The following processes are involved:

p1 Et node Boston
p1 at node Phoenix
p2 at node Cambridge

End of deadlock list

Appendix III scenarios denio5 denio6

exclusive

Boston Phoenix

shared

Final StteDaga

Cambidg

IiaSaeDiga

Appendix III roenario demo6

scenario demot
note This is an example of a state where two deadlocks exist
note involvingwfour processes and four resources located in three
note nodes. Two deadlocks are involved because dbol in Cambridge
note has two shared users. The first 10 commands create the state
note where all the involved processes are active and all the involved
note resources have been allocated to the proper processes.
initmg mgi Boston pl Cambridge
Message group mg1 has been initiated

acce tmg mgl Cembridge pl
mgl has been accepted by pl at node Cambridge

rqd o shared Cabridge pl Cambridge dbol
pl at node Cambridge granted shared access to dbol at node Cambridge

rqdbo shared Boston pl Cambridge dbol
Process pl at node Boston is blocked while a request is sent to

the node containing the desired resource
Control message number 1 sent from Boston to Cambridge

represerting a remote resource request- rcvcm 1
Control message number i representing a remote resource request

has been received
p1 at rode Boston is granted shared access to

dbol at node Cambridge
Control message number 2 sent from Cambridge to Boston

rvm 2 representing this allocation
Control message number 2 representing a remote resource allocation

has been received
p1 at node Boston has been granted shared access to

dbol at node Cambridge
rqdbo exclusive Cambridge p2 Phoenix dbol

Process p2 at node Cambridge is blocked while a request is sent to
the node containing the desired resoure%

Control message number 3 sent from Cambridge to Phoenix
representing a remote resourca request

rcvcm 3Control message number 3 representing a remote resource request
has been received

P2 at node Cambridge is granted exclusive use of
dbol at node Phoenix

Control message number 4 sent from Phoenix to Cambridge
rrepresenting this allocation!rcvcm4

Control message number 4 representing a remote resource allocation
has been received

p2 at node Cambridge has been granted exclusie use of
dbol at node Phoenix

rqdbo shared Phoenix pl Phoenix dbo2
pl at node Phoenix granted shared access to dbo2 at node Phoenix

rqdbo exclusive Boston pl Phoenix dbo2
Process p1 at node Boston is blocked while a request is sent to

the node containing the desired resource
Control message number 5 sent from Boston to Phoenix

representing a remote resour-ee request
note pl in Phoenix is active, so there will be no deadlock when the
note remote resource request is received from Boston.
rcvcm 9
Control message number 5 representing a remote resoiirce request

has been received
Resource is not currently availble for exclusive use, process pl

at node Boston remains olocked
rqdbo 'tared Phoenix pl Phoenix dbol

Nescurce not available, process blocked.
Control message number 6 sent from Phoenix to Cambridge

representinv an JBPL

Arpendix III scenario demo6

note t2 in Cambridge is active, so the CBPL will be discarded after
note t is received by Cambridge.
rcvcm 6

Control message number 6 representing an OBPL has been received.
rcvmsg mgl

Process pl at node Cambridge is blocked waiting for a
message in message group mgl

Control message number 7 sent from Cambridge to Boston
representing an OBPL

note p2 in Cambridge is active, so the OBPL will be discarded when
note it reaches Cambridge.
rcvcm 7

Control message number 7 representing an OBPL has been received.
Control message number 8 sent from Boston to Phoenix

rovcm 8 representing an OBPL

Control message number 8 representing an OBPL has been received.
Control message number 9 sent from Phoenix to Cambridge

representing an OBPLrcven 9
Control message number 9 representing an OBPL has been received.

note This neit request will create two deadlocks due to the fact that
note dbol in Cambridge has two readers. Two OBPL's will be generated,
note and both deadlocks will be detected when their respective OBPL's
note arrive in Phoenix. The OBPL's need not return to Cambridge
note because p2 in Cambridge was the first process to be placed in the
note OBPL's, and Phoenix knows that p2 in Cambridge controls dbol
note in Phoenix.
rqdbo exclusive Cambridge p2 Cambridge dbol

Resource is not currently available for exclusive use, process p2
at node Cambridge is blocked.

Control message number 10 sent from Cambridge to Boston
representing an OBPL

Control message number 11 sent from Cambridge to Boston
representing an OBPL

rcvcm 10Control message number 10 representin gan OBPL has been received.
Control message number 12 sent from Boston to Phoenix

representing an OBPLrcvem 12
Control message number 12 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved.

p2 at node Cambridge
p1 at node Cambridge
1! at node Boston
p1 at node Phoenix

End of deadlock list
rcvcm 11
Control message number 11 representing an OBPL has been received.
Control message number 13 sent from Boston to Phoenix

rcvcm 13 representing an OBPL

Control message number 13 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p2 at node Cambridge
p1 at node Boston
p1 at node Phoenix

End of deadlock list

Appendix III scenario demo7

scenario demo7
note This is an example of a state where three deadlocks exist
note involving six processes and five resources located in three
note nodes. Three deadlocks are involved because dbo2 in Boston
note has three shared users. Five, rather than six, resources are
note involved because two processes are waiting for the same database
note object. The first 18 commands create the state where all the
note involved processes are active and all the involved resources
note have been allocated to the proper prooessea.
rqdbo shared Boston pl Boston dbo2

p1 at node Boston granted shared access to dbo2 at node Bo.on
initmg mg1 Phoenix pl Boston
Message group mgl has been initiated

acceptmg mgi Boston pl
mg1 has been accepted by pl at node Boston

rqdbo exclusive Phoenix p2 Boston dbol
Process p2 at node Phoenix is blocked while a request is sent to

the node containing the desired resource
Control message number 1 sent from Phoenix to Boston

representing a remote resource requestrcvcm 1
Control message number 1 representing a remote resource request

has been received
p2 at node Phoenix is granted exclusive use of

dbol at node Boston
Control message number 2 sent from Boston to Phoe'iix

representing this allocationrcvcm 2
Control message number 2 representing a remote resource allocation

has been received
p2 at node Phoenix nas been granted exclusive use of

dbol at node Boston
rqdbo shared Cambrtd ge pl Boston dbo2

Process p1 at node Cambridge is blocked while a request is sent to
the node containing the desired resource

Control message number 3 sent from Cambridge to Boston

rvci 3 representing a remote resource request

Control message number 3 representing a remote resource request
bas been received

- p1 at node Cambridge is granted shared access to
4dho2 at node Boston

Control message number 4 sent from Boston to Cambridge

r representing this allocation
Control message number 4 representing a remote resource allocation

has been received
p1 at node Cambridge has been granted shared access to

dto2 at node Boston
rqdbo shared Cambrid ge p2 Boston dbo2

Pricess p2 at node Cambridge is blocked whilt a request is sent to
the node containing the desired resource

Cc.ntroi message number 5 sent from Cambridge to Boston
reoresenting a remote resource request

rquot 3hared Phoenix pi Cambridge dbol
F,ocesm p1 at node Phoenix is blocked while a request is sent to

tNe node containing the desired resource
Con-rol message number 6 bent from Phoenix to Cambridge

representing a remote res3,urce request
rcv(," , r

Control message number 5 oeprcsentin a remote resource reque.it
hacs been received

at node Cambvidge is granted :hared access to
.cbe at node ost~n

r , ess- g"," r:uwbtr 7 sent fror, ,oston to Cambridge
~err~~r t tils 11ocation

Appendix III scenario demo7

rcvm 6
Control message number 6 representing a remote resource requesthas Dean received

p1 at node Phoenix is granted shared access to
dbol at node Cambridge

Control message number 8 sent from Cambridge to Phoenix
representing this allocationrovcm 7

Control message number 7 representing a remote resource allocation

has been receivedp2 at node Cambridge has been granted shared access to

dbo2 at node Bostonrevcm 8
Control message number 8 representing a remote resource allocation

has been received
p1 at node Phoenix has been granted shared access to

dbol at node Cambridge
rqdbo exclusive Cambridge p3 Phoenix dbol

Process p3 at node Cambridge is blocked while a request is sent to
the node containing the desired resource

Control message number 9 sent from Cambridge to PhoenixSrepresenting a remote resource request
rcvcm 9

Control message number 9 representing a remote resource request
has been received

p3 at node Cambridge is granted exclusive use of
dbol at node Phoenix

Control message number 10 sent from Phoenix to Cambridge
representing this allocationrocc 10

Control message number 10 representing a remote resource allocation
has been received

P3 at node Cambridge has been granted exclusive use of
dbol at node Phoenix

rcvmsg mgl
Process p1 at node Boston is blocked waiting for a

message in message group mgl
Control message number 11 sent from Boston to Phoenix

representing an OBPL
note The OBPL will be discarded by Phoenix because pl is active.
rcvcm 11

Control message number 11 representing an OBPL has been received.
rqdbo shared Cambridge pl Boston dbol

Process pl &t node Cambridge is blocked while a request is sent to
the node containing the desired resource

Control message number 12 sent from Cambridge to Boston
representing a remote rescurce request

no;e The process that controls dbol in Boston is located In Phoenix,
note and is active, Therefore, when Boston receives the resource
note request, it w " create an OBPL and send it to Phoenix, which
note will then dif ird it.
rcvcm 12
Control message number 12 representing a remote resource request

has been received
Resource not available, process remains blocked.
Contrcl message number 1s__sent from Boston to Phoenix

I cyJI Oot-it1UI dtI 'JDrL

rcvcm 13
Control message number 13 repres-nting aa OBPL has been received.

rqdbo exclusive Phoenix p2 Phoenix dbol
Fesource not available, process blocked.
Control message number '4 sent from Phoenix to Cambridge

rep rsenting an OBPL
note The OFPL will be discarded by Cambridge because p3, which controls
note dbol in Phoenix, is active.
rcvct

14C -P;tr ressa.e nunber l4 r ,res rntinw an O08PL has tvn received

Appendix III scenario demo7

rqdbo exclusive Cambridge P3 Cambridge dbol
Resource is not currently available for exclusive use, process P3

at node Cambrid ge is blocked.
Control message number 15 sent from Cambridge to Phoenix

representing an OsPL
note The OBPL will be discarded by Phoenix because pl, which controls
note dbol in Cambridge, is active.
rovcm 15

Control message number 15 representing an OBPL has been received.
rqdbo shared Cambridge p2 Phoenix dbol

Process p2 at node Cambridge is blocked while a request is sent to
the node contain ng the desired resource

Control message number lA sent from Cambridge to Phoenix
rcc 6 representing a remote resource reques+i rcvcm 16

Control message number 16 representing a remote resource request
has been received

Resource not available, process remains blocked.
Control message number 17 sent from Phoenix to Cambridge

representing an OBPL
note An OBPL is sent to Cambridge because P3 in Cambridge controls
note dbol in Phoenix. p3 will be added to the OBPL which will then
note be passed to Phoenix becaLse pl in Phoenix controls dbol in
note Cambridge. The OBPL will then be discarded because pl is active,
rcvcm 17
Control message number 17 representing an OBPL has been received.
Control message number I sent from Cambridge to Phoenix

rcvcm 18 representing an OBPL

Control message number 18 representing an OBPL has been received.
note The next request creates three deadlocks. When Boston receives
note the remote resource request for dbo2, it creates three OBPL's
note because there are three readers of the database object. We will
note then allow the three OBPL's to be passed among nodes until all
note three deadlocks have been detected, at which time there will be
note no outstanding OBL's or control messages.
rqdbo exclusive Phoenix p1 Boston dbo2

Process pl at node Phoenix is blocked while a request is sent to
the node containing the desired resource

Control message number 19 sent from Phoenix to Boston
representing a remote resource request

rcvcm 19
Control message number 19 representing a remote resource request

has been received
Resource is not currently available for exclusive use, process pl

at node Phoenix remains blocked
Control message number 20 sent from Boston to Cambridge

representing an OBPL
Control message number 21 sent from Boston to Phoenix

representing an OBPL
Control message number 22 sent from Boston to Cambridge

representing an OBPL
rcvcm 21
Control message number 21 representing an OBPL has been received.
A deadlock has been detected. The following procesoes are involved:

p1 at node Phoenix
p1 at node Boston

End of deadlock list
rcvem 20

Control mesu3age number 20 representing an CBPL has been received.
Cortrol mesiage number 23 sent from Cambridge to Boston

representing an OBPL
rcvcr 22

Con trol message number 22 representing an OBPL has been receiveJ.
Ccntrol message number 24 sent from Cambridge to Phoenix

r e,1r es e n t I , a n P(14lI

Appendix III scenario demo7

revcm 23
Control message number 23 representing an OBPL has been received.
Control message number 25 sent from loston to Phoenix

representing an OBPLrcvcm 25
Control message number 25 representing an OBPL has been received.
Control message number 26 sent from Phoenix to Cambridge

representing an OBPL
rcvem 26
Control message number 26 representing an OBPL has been received.
A deadlock has been detested. The following processes are involved:

p1 at node Phoenix
p1 at node Cambridge
p2 at node Phoenix

End of deaflook list at node Cambridge

rcvcm 24
Control message number 24 representing an OBPL has been received.
Control message ntAber 27 sent from Phoenix to Cambridge

representing an OBPLrcvem 27
IControl message number 27 representing an OBPL has been received.

A deadlock has been detected. Tho following processes are involved:
p1 at node Phoenix
p2 at node Cambridge
P1 at node Cambridge

End of deadlock list

Appendix III scenarios demo? demo8

shared shared shrd 5ae

exclusiv

dbo2 /

P16

Appendix III scenario demo8

scenario demo8
note This is an example of a state where three deadlocks exist
note involving.six processes and five resources located in three
note nodes. Three deadlocks are involved because dbo2 in Boston
note has three shared users. Five, rather than six, resources are
note involved because two processes are waiting for the same database
note object. The first 18 commands create the state where all the
note involved processes are active and all the involved resources
note have been allocated to the proper processes.
rqdbo shared Boston pl Boston dbo2
p at node Boston granted shared access to dbo2 at node Boston

initmg mgl Phoenix pl Boston
Message group mgl has been initiated

acceptmg mgl Boston pl
mgl has been accepted by pl at node Boston

rqdbo exclusive Phoenix p2 Boston dbol
Process p2 at node Phoenix is blocked while a request is sent to

the node containing the desired resource
Control message number 1 sent from Phoenix to Boston

representing a remote resource requestrcvcm 1
Coitrol message number 1 representing a remote resource request

has been received
p2 at node Phoenix is granted exclusive use of

dbol at node Boston
Control message number 2 sent from Boston to Phoenix

rcvcm 2 representing this allocation

Control message number 2 representing a remote resource allocation
has ben received

p2 at node Phoenix has been granted exclusive use of
dbol at node Boston

rqdbo shared Cambridge pl Boston dbo2
Process pl at node Cambridge is blocked while a request is sent to

the node containing the desired resource
Control message number 3 sent from Cambridge to Boston

rcvcm 3 representing a remote resource
request

Control message number 3 representing a remote resource request
has been received

p1 at node Cambridge is granted shared access to
dbo2 at node Boston

Control message number 4 sent from Boston to Cambridg(

rcvcm 4 representing this allocation

Control message number 4 representing a remote resource allocation
has been received

pd at node Cambridge has been granted shared access to
dbo2 at node Boston

rqdbo shared Cambridge p2 Boston dbo2
Proce:,z p2 at node Cambridge is blocked while a request is sent to

the node containing the desired resource
Control message number 5 sent from Cambridge to Boston

representing a remote resource request
rqdbo shared Phonix pi Cambridge dbol
Processp at node Phoenix is blocked while a reque t is sent to

Control message number 6 sent from Phoenix to Cambridge
reprtoenting a remote resource requestS rcvc-,

ontrol meise number 5 representing a remote resour,.e request
has been received

Ip at node Cambridge is g--,oted shared access to
dbo2 it node Bostor

Control message number 7 sent from Boston to Cambridge
reoresertina this allocatior

Appendix III scenario demo8

rcvam 6
Control message number 6 representing a remote resource request

has been received
p1 at node Phoenix is granted shared access to

dbol at node Cambridge
Control message number 8 sent from Cambridge to Phoenix

rvc 7 representing this allocation

Control message number 7 representing a remoie resource allocation
has been received

p2 at node Cambridge has been granted shared access to
dbo2 at node Boston

rcvcm 8
Control message number 8 representing a remote resource allocation

has been received
p1 at node Phoenix has been granted shared access to

dbol at node Cambridge
rqdbo exclusive Cambridge p3 Phoenix dbol
Process t3 at node Cam ridge is blocked while a request is sent to

he node containing the desired resource
Control message number 9 sent from Cambridge to Phoenix

representing a remote resource request= rcvcm 9

Control message number 9 representing a remote resource request
has been received

p3 at node Cambridge is granted exclusive use of
dbol at node Phoeiy

Control message number 10 sent from Phoenix to Cambridge
representing this allocation

rcvcm 10
Control message number 10 representing a remote resource allocation

has been received
P3 at node Cambridge has been granted exclusive use of

dbol at node Phoenix
rqdbo exclusive Phoenix pl Boston dbo2
Process pl at node Phoenix is blocked while a request is sent to

the node containing the desired resource
Control message number 11 sent from Phoenix to Boston

representing a remote resource reqaest
note After receipt of the remote resource request, Boston will send
note two OBPL's to Cambridge because two processes in that node have
note shared use of dbo2 in Boston. A third external message is not
note needed because the third reader of dbo2 is located in Boston
note and is active. We will delay the receipt of one of the OBPL's
note until after the process in the list that controls dbo2 gets
note blocked waiting for a resource located in Phoenix.
rcvcm 11

Control message number 11 representing a remote resource request
has been received

Resource is not currently available for exclusive use, process pl
at node Phoenix remains blocked

Control message number 12 sent from Boston to Cambridge
representing an OBPL

Control message number 13 sent from Boston to Cambridge
representing an OBPLrcvcm 1?

Control message number 12 repr~senting 3n OBPL has been received,

Procers pl at node Cambridge is blocked while a request is sent to
the node containing the desired resource

Control message number 14 sent from Cambridge to Boston
representin'v a rprrte resource request

radbo shared rambridge u2 Phoenix dhol
Process P, at node Catibridqe 1s blocked while a request is sent to

e node contai!ing the desired resource
otr - r m -_a~e naier Ic sent from Cambridge to Phoenix

representin a remote resource reque-t

Appendix III scenario demo8

rovm 13
Control message number 13 representing an OBPL has been received.
Control message number 16 sent from Cambridge to Phoenix

representing an OBPLnote Let hoenix receive the OBPL before it receives the r note resource
note request that was assumed to have taken place before tne last
note process was added to the OBPL. The OBPL will be discarded because
note Phoenix has no record that p2 in Cambridge is waiting for dbol
note in Phoenix.
rcvem 16

Control message number 16 representing an OBPL has been received.
note Now let the above mentioned remote resource request be received
note byPhoenix. An OBPL will be created and sent to Cam')ridge, which
note will then discard the OBPL because P3 is active.
rcvcm 15
Control message number 15 representing a remote resource request

has been received
Resource not available, process remains blocked.
Control message number 17 sent from Phoenix to Cambridge

representing an OBPL
rcvcm 17

Control message number 17 represeriting an OBPL has been received.
note Now let the remote resource request for dbol in Boston by pl in
note Cambridge be received by Boston. An OBPL will be created and sent
note to Phoenix where p2 in Phoenix is waiting for dbol in Phoenix, so
note the OBPL will be passed on to Cambridge where P3 is active, and
note the OBPL will then be discarded.
rcvcm 14
Control messags number 14 representing a remote resource recuest

has ben received
Resource not available, process remains blocked.
Control message number 18 sent from Boston to Phoenix

rcvcm 18 representing an OBPL

Control message number 13 representing an OBPL has been received.
rqdbo exclusive Phoenix p2 Phoenix dbol

Resource not available, rocess blocked.
Control message number 19 sent from Phoenix to Cambridge

regresenting an OBPL
note e BPL will be discarded by Cambridge because P3 is active.
rcvcm I
Control message number 19 representing sn OBPL has been received.

note The next command will create a two process two resource deadlock.
note An OBPL will be sent to Phcerlx, wh ch will append pl in Phoenix
note to the OBPL and send the OBPL back to Boston because pl is waiting
note for dbo2 in Boston. The deadlock will then be detected, and two
note OBPL's will be sent to Cambridge because there are three readers
note of dbo2. These OBPL's will then be passed around until they
note return to Cambridge. where they will be discarded because p3 in
note Cambridge will st i1 be active when the OBPL's get examined.
rcvmsg mgl
Process p1 at node Boston is blocked waiting for a

message in message group mgl
Control message number 20 sent from Boston to Phoenix

representing an OBPL
rnvcm 20

Control message number 20 representing an OBPL has been received.
Control message number 21 sent from Phoenix to Boston

representing an OBPL

Appendix III scenario demo8

rcvcm 21
Control message number 21 representing an OBPL has been received.
Control message number 22 sent from Boston to Cambridge
A representing an OBPL
A deadlock has been dLtected. The following processes are involved:

p1 at node Boston
p, at node Phoenix

End of deadlock list
Control message number 23 sent from Boston to Cambridge

rcvcm 22 representing an BPL

Control message number 22 representing an OBPL has been r'eceived.
Control message number 24 sent from Cambridge to Boston

ravem 24 representing an OBPL

Control message number 24 representing an OBPL has been received.
Control message number 25 sent from Boston to Phoenix

representing an OBPL
rcvcm 25

Control message number 25 representing an OBPL has been received.
Control message number 2b sent from Phoenix to Cambridge

revon 26 representing an OBPL

Control message number 26 representing an OBPL has been received.
rcvcm 23

Control message number 23 representing an OBPL has been received.
Control message number 27 sent from Cambridge to Phoenix

representing an OBPLrcvcm 27
Control message number 27 representin an OBPL has been received.
Control message number 26 sent from Phoenix to Cambridge

rcvcm 28 representing an OBPL

Control message number 28 representing an OBPL has been received.
note This next request will create two deadlocks. An OBPL will be
note sent to Phoenix, which will add p1 in Phoenix to the list and
note send it to Boston. Boston will then send out three OBPLS,
note one for each reader of dbo2 in Boston. These OBPL's will be
note passed among the various nodes until there are no more OBPL's
note and control messages outstanding. Note that the two process two
note resource deadlock will be detected for a second time because of
note the fact that p1 in Boston still has shared access to dbo2 in
note Boston and the deadlock has not been broken by aborting any
note processes.
rqdbo exclusive Cambridge P3 Cambridge dbol
Resource is not currently available for exclusive use, process P3

at node Cambridge is blocked.
Control message number 29 sent from Cambridge to Phoenix

rcvcm 29 representing an OBPL

Control message number 29 represeniing an OBPL has been received.
Control message number 30 sent from Phoenix to Boston

rcvcm 30 representing an OBPL

Control message number 30 representng an OBPL has been received.
Control message number 31 sent from Boston to Cambridge

representing an OBPL
UU11ru L r'ULW~~age uiut~t _2 au V ' .

Cepresenting an OBPL
Control message number 33 sent from Boston to Camhridpe

representing an OBPL
revem 32

Control Tessage number 32 rewresent.ng an OBPL has been received.
A deadlock has been detected. The f-llowing processes are involved;

p1 at nooe Phoenix
p1 at node Boston

Wnd of deadikcK list

Appendix III scenario demo8

revem 31
Control message number 31 representin an O3PL has been received.
Control message number 3 sent from Cambridge to Boston

revm 34 representing an OBPL
Control message number 34 representing an OBPL has been received.
Control message number 35 sent from Boston to Phoenix

representing an OBPLrevom 35
Control message number 35 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p3 at node Cambridge
p at node Phoenix
pl at node Cambridge
p2 at node Phoenix

End of deadlock list
revem 33
Control message number representing an OBPL has been received.
Control message number 3g sent from Cambridge to Phoenix

rev-m 36 representing an OBPL

Control message number 36 representing an OBPL h0s been rmceived.
A deadlock has been detected. The following processes &re involved:

Pj at node Cambridgep at rnjde Phoenix
p2 at node Cambridge

End of deadl~ock lidt

otu~

Appendix III scenario demo9

scenario demo9
note This is an example of a case where a process releases a remote
note database object and sends a remote resource control message at
note the same time that an OBPL is sent to this node stating that some
note other process is waiting for the resource mentioned above, which
note is controlled by the first process mentioned above. Before the
note OBPL arrives, e first process getz blocked waiting for a resource
note that is controlled by the process that was placed in the OBPL.
note No deadlock is detected because the resource in juestion is no
note longer controlled by the last process to be adde to the OBPL.
rqdbo shared Boston pl Phoenix dbol
Process p at node Boston is blocked while a request is sent to

the node containing the desired resource
Control message number 1 sent from Boston to Phoenix

rvm 1 representing a remote resource request

Control message number 1 representing a remote resource request
has been received

p1 at node Boston is granted shared access to
dbol at node Phoenix

Control message number 2 sent from Phoenix tc Boston
representing this allocation

rcvcm 2
Control message number 2 representing a remote resource allocation

has been received
p1 at node Boston has been granted shared access to

dbol at node Phoenix
rqdbo exclusive Phoenix l Boston dbol

Process p1 at node Phoenix is blocked while a request is sent to
the node containing the desired resource

Control message number 3 sent from Phoenix to Boston

revcm 3 representing a remote resourc3 request

Control wessage number 3 representing a remote resource request
has been received

p1 at node Phoenix is granted exclusive use of
dbol at node Boston

Control message number 4 sent from Boston to Phoenix

c representing this allocation

Control message number 4 representing a remote resource allocation
has been received

p1 at node Phoenix has been granted exclusive use of
dbol at node Boston

rqdbo shared Boston pl Boston dbol
Resource not available, process blocked.
Control message number 5 sent from Boston to Phoenix

representing an OBPL
note Let dbol in Boston be released by pl in Phoenix, and let pl innote Phoenix then get blocked waiting for dbol in Phoenix before th
note OBPL from Boston is received by Phoenix.
rldbo Phoenix pl Boscon dbol

Control message number 6 ment from Phoenix to Boston

rcvcm 6 representing a remote resource release

Control message number 6 representing a remote resource release
has been received

CIL, a t DOJUu h bten released by
p1 at node Phoenix

Process pl at node Boston is granted shared access to
dbol at node 1 ston

rqdbo exclusive Phoenix pl Phoenix dbol
Resource is not currently available for ex2lusive use, process pl

at node Phoenix is niocked.
Control message number 7 sent from Phoenix to Boston

r'epresentinq an 9PPL

17;:

Appendix IIT scenario demo9

rovom 7
Control message number 7 representing an OBPL has been received.

note No deadlock will be detected because Phoenix observes that pl in
note Phoenix no longer has access to dbol in Boston, and discards
note the OBPL.
rcvcm 5
Control message number 5 representing an OBPL has been received.

shared

shard,

dexclusive

Boston Phoenix

State where control message 5 has just been sent from Boston to Phoenix.
Control message 5 represents an OBPL. Receipt of the OBPL is delayed until
after the state drawn below is reached.

shared exclusive

Boston Phoenix

Final State Diagram

173

Appendix III scenario demolO

scenario demolO
note This is an example where Rn OBPL is sent from Boston to Phoenixnote stating that a process in boston 1s waiting for a message from a
note process in Phoenix. Before the OBPL arrives in Phoenix, the
note desired message is sent and the process in Phoenix gets blocked
note waiting for a resource that is controlled by the process that was
note placed in the OBPL that was sent from Boston to Phoenix. No
note deadlock is detected because Phoenix notices that the message
note that was desired by the process in Boston has already been sent.
note The first six commands create the state where the OBPL
note mentioned above has Just been sent.
initmg mgl Phoenix pl Boston
Message group mgl has been initiated

acce tmg mgl Boston pl
mE has been accepted by at node Boston

rqd o exclusive Boston pl Phoenix dbol
Process 1 at node Boston is blocked while a request is sent tothe node containing the desired resource
Control message number 1 sent from Boston to Phoenix

representing a remote resource request

rcvcm 1
Control message number 1 representing a remote resource request

has been received
p1 at node Boston is granted exclusive use of

dbol at node Phoenix
Control message number 2 sent from Phoenix to Boston

representing this allocationrcvem 2
Control message number 2 representing a remote resource allocation

has been received
p1 at node Boston has been granted exclusive use of

dbol at node Phoenix~rcvmsg mg

Process p1 at node Boston is blocked waiting for a
message in message group mgl

Control message number 3 sent from Boston to Phoenix
representing an OBPL

note We will now temporarily delay receipt if the OBPL by Phoenix.
note Send the message that the process in Boston desires.
sendms m9L
Control message number 4 sent from Phoenix to Boston

representing a message in a message group.note Let the process in Boston receive te message.
~rcvcm 4

Control messagejnumber 4 representing a message in a message group
has been received

Process p1 at node Boston has been awakened upon
receipt of a message in message group mgl

note Block pl in Phoenix and then let Boston discard the OBPL that
note will be created as a result of this wait.
rqdbo shared Phoenix l Phoenix dbol

Resource not availa le, process blocked.
Control message number 5 sent from Phoenix to Boston

representing an OBPLrevam 5
Control message number 5 representing an OBPL has been received.

note Now let Phoenix receive the OBPL that was nreviouslv sent hv
note boston.
rcvcm 3
Control message number 3 representing An OBPL has been received.

174

Appendix III scenario demo 10

State where control message 3 representing an OBPL has just been sentfrom Boston to Phoenix. Receipt of the OBPL is delayed until after the statedrawn below is reached.

Final State Diagraim

175

Appendix III scenario demoll

scenario demo11
note This is an exanple of a deadlock involving one process and one
note operator at the same node. Two operator connections are invo)ved.
dclop Boston opl

opi has been declared as an operator at node Boston
copcon coni Boston opl p1
Operator connection coni has been established

copoon con2 Boston op' p1
Operator oonneotior con2 has been established

note Let pl in Boston request a message from aperator opl in Boston
rOvopM3g coni

Process pl at node Boston is blocked waiting for a
message over operator connection coni

An OBPL has been queued waiting for a status report from operator opl
at node Boston The involved operator connection is conl

note Create a deadlock by reporting thst opl is wuiing for a message
note over operator connection con2.
opstat Boston opl waiting con2
We will now check for deadlock involving the given operator

and operator connection
A deadlock has been detected. The following processes are involved:

p1 at node Boston
Opi at node Boston

End of deadlock list

< con

con

Boston

176

Appendix III scenario demo12 1
soenario demo12

note This is an example of a deadlock across three nodes which involves
note several operator connections. It demonstrates that deadlock
note involving operators will be detected as long as the operator
note properly :tates what he is waiting for. The first 15 commands
note set up the state where all operators have been declared, all
note operator connections have been created, the message groug has
note been initiated and accepted, and the involved dtabase o jects
note have been assigned to the proper processes.
dolop Boston opi

opi has been declared as an operator at node Boston
dclop Phoenix opl

opi has been declared as an operator at node Phoenix
dolop Boston op2

op2 has been declared as an operator at node Boston
coeoon coni Boston opl pl
Operator connection con1 has been established

co8pon con2 Boston opl p2
perator connection con2 has been established

copoon con3 Boston op2 p2
Operator connection oon3 has been established

copoon con4 Boston op2 p3
Operator connection con4 has been established
con con5 Phoenix opl p2
Oerator oonneotion con5 has been established
"perator connection con6 has been established

initog mg1 Cambridge pl Phoenix

Message groug mg has been initiated
acceptg mg! P oenix pl

1 has been accepted by pl at node Phoenix
rqdo exclusive Boston Q Cambridge dbol
Process U3 at node Boston is blocked while a request is sent to

e node containing the desired resource
Control message number 1 sent from Boston to Cambridge

rvcm I representing a remote resource
request

Control mesage number 1 representing a remote resource request
has been received

P3 at node Boston is granted exclusive use of
dbol at node Cambridge

Control message number 2 sent from Cambridge to Boston
representing this allocation

r tvcm 2
Z Cohtrol message number 2 representing a remote resource allocation

has een receivedp3 at node Boston has been granted exclusive use of

dbol at node Cambridge
rqdbo shared Phoenix p2 Phoenix dbol
j2 at node Phoenix granted shared access to dbol at node Phoenix
noe Let pl in Boston wait for exclusive use of dbol in Phoenix. No
note deadlock will be detected because p2 in Phoenix, which controls
note dbol in Phoenix is aotive.
rqdbo exclusive Boston pi Phoenix dbol

Process pl at node Boston is blocked while a request is sent to
the node containing the desired resource

Control message number 3 sent from Boston to Phoenix
representing a remote resource request

rcvcm 3
Control message number 3 representing a remote resource request

has been received
Resource is not curiently available for exclusive use, process pl

at node Boston remains blocked

177

Appendix III scenario demo12

note Let g2 in Phoenix now wait for a message from opl in Phoenix.
note We then state that cpl in Phoenix is active, so no OBPL's get
note expanded further.
rcvopmsg con5
Process p2 at node Phoenix is blocked waiting for a

message over operator connection con5
An OBPL has been queued waiting for a status report from operator opl

at node Phoenix The involved operator connection is con5
opstat Phoenix op1 active

All OBPL's wai ing for the given state information have been discarded
note Let p1 in Phoenix wait for a message from pl in Cambridge. No
note deadlock exists because pl in Cambridge is active.
rcvmsg mgi
Process p1 at node Phoenix is blocked waiting for a

message in message group mgl
Control message number 4 sent from Phoenix to Cambridge

rcvcm 4 representing an OBPL

Control message number 4 representing an OBPL has been received.
note Let P3 in Boston wait for a message from op2 in Boston. The
note OBPL created when p3j gets blocked will be discarded when we
note state that op2 is active.•rovopmsg con4
Process P3 at node tBo ioo is blocKed waiting for a

message over operator connection con4
An OBPL has been queued waiting for a status report from operator op2

at node Boston The involved operator connection is con4
opstat Boston op2 active

All OBPL's waiting for the given state information have been discarded
note Simultaneously block pl in Cambridge and p2 in Boston. Then
note let Boston receive the OBPL from Cambridge that was created
note when pl in Cambridge was blocked. Before we report the status
note of opl in Boston state that op2 in Boston is waiting for a
note message from p2 In Boston, thereby queuing a second OBPL for
note information on the status of opl in Boston.
rqdbo shared Cambridge pl Cambridge dbol

Resource not available, process b]ocked.
Control message number 5 sent from Canbridge to Boston

representing an OBPL
rcvopmsa con2

b Process p2 at node Boston ir blocked waiting for a
K !message over operator connection con2

An OBPL has been queued wafting for a status report from operator opl

at node Boston The involved operator connection is con2

Control message number 5 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op2

at node Boston The involved operator connection is con4
opstat Boston op2 waiting con3

We will now check for deadlock involving the given operator
and operator connection

An OBPL has been queued waiting for a status report from operator opl
at node Boston The involved operator connection is con2

opstat Boston op 1waiting con1
We will now check for eadlock involving the given operator

K and operator connection
Control message number 6 sent from Boston to Phoenixrepresenting an OBPL

repr esenting an OBPL
note There were two OBPL's waiting for state information from opl innote Boston, therefore two OBPL's are expanded and sent to Phoenix.

note Let Phoenix receive and expand both OBPL'v and state that opl
note in Phoenix is waiting for a message from pi in Phoenix th.reby
note closina the deadlock loop. The deadlock will be detecied twice
note because we had two OBPL's being passed around due to the fact
note that we blocked two processes simultaneously.

17e

Appendix III scenario demo12

rcvcm 6
Control message number 6 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator opl

at node Phoenix The involved operator connection is con5
rcvcm 7
Control message number 7 representing an OBPL has been received.
An OBPL has been queued waiting for a status renort from operator opl

at nodp Phoenix The involved operator connection is con5
opstat Phoenix opl waiting con6

We will now check for deadlock involving the given operator
and operator connection

Control message number 8 sent from Phoenix to Cambridge
representing an OBPL

Control message number 9 sent from Phoenix to Cambridge

rvcm 8 representing an OBPL

Control message number 8 representing An OBIL has been received.
Control message number an aent from Cambridge to Boston

representing an OBPL

Control message number 9 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p1 at node CambriJge
P3 at node Boston
oR2 at node Boston
P at node Bostono 1 at node Boston

p at iode Boston
P2at node Phoenix
opl at node Phoenix
P1 at node Phoenix

End of deadlock list
rcvcm 10

Control message number 10 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op2

at node Boston The involved operator connection is con4
opstat Boston op2 waiting con3

We will now check for deadlock involving the given operator
and operator connection

A deadlock has been detected. The following processes are involved-
p2 at node Boston

- opl at node Boston
p1 at node Boston
p2 at node Phoenix
opl at node Phoenix
p1 at node Phoenix
p1 at node Cambridge
p3 at node Boston
oy2 at node Boston

End of deadlock list

I
I

: 90

Appev~h IIIscmnario demo12

~-exlusive sae

con

Caobridg

Fina Sttonaa

con0

Official Distribution List

Defense Documentation Center New York Area Office
Cameron Station 715 Broadway - 5th floor *

Alexandria, Va 22314 12 copies New York, N. Y. 10003 1 copy

Office of Naval Research Naval Research Laboratory
Information Systems Program Technical Information Division
Code 437 Code 2627
Arlington, Va 2221? 2 copies Washington, D. C. 20375 6 copies

Office of Naval RUsearch Dr. A. L. Slafkosky
Code 1021P Scientific Advisor
Arlington, Va 22217 6 copies Commandant of the Marine Corps

(Code RD-1)
Washiagton, D. C. 20380 1 copy

Office of Naval Research
Code 200
Arlington, Va 22217 1 copy Naval Electronics Laboratory Center

Adv4-anced Software Technology Division
Code 5200

Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center

Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 1 copy

Captain Grace M. Hopper
Office of Naval Research NKAICOM/MIS Planning Branch (OP-916D)
Branch Office, Boston Office of Chief of Naval Operations

495 Summer Street Washington, D. C. 20350 1 copy
Boston, Ma 02210 1 copy

Mr. Kin B. Thompson
Office of Naval Research Technical Director
Branch Office, Chicago Information Systems Division (OP-91T)
536 South Clark Street Office of Chief of Naval Operations
Chicago, Il 60605 1 copy Washington, D. C. 20350 1 copy

Offilce Of N11a-val.....

Branch Office, Pasadena
1030 East Green Street
Pasadena, Ca 91106 1 copy

